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Abstract

Today, most methods for image understanding tasks rely

on feed-forward neural networks. While this approach has

allowed for empirical accuracy, efficiency, and task adap-

tation via fine-tuning, it also comes with fundamental dis-

advantages. Existing networks often struggle to generalize

across different datasets, even on the same task. By design,

these networks ultimately reason about high-dimensional

scene features, which are challenging to analyze. This

is true especially when attempting to predict 3D informa-

tion based on 2D images. We propose to recast 3D multi-

object tracking from RGB cameras as an Inverse Rendering

(IR) problem, by optimizing via a differentiable rendering

pipeline over the latent space of pre-trained 3D object rep-

resentations and retrieve the latents that best represent ob-

ject instances in a given input image. To this end, we op-

timize an image loss over generative latent spaces that in-

herently disentangle shape and appearance properties. We

investigate not only an alternate take on tracking but our

method also enables examining the generated objects, rea-

soning about failure situations, and resolving ambiguous

cases. We validate the generalization and scaling capabil-

ities of our method by learning the generative prior exclu-

sively from synthetic data and assessing camera-based 3D

tracking on the nuScenes and Waymo datasets. Both these

datasets are completely unseen to our method and do not

require fine-tuning. Videos and code are available here².

1. Introduction

The most successful image understanding methods today

employ feed-forward neural networks for performing vision

tasks, including segmentation [1±3], object detection [4±

10], object tracking [11±17] and pose estimation [18, 19].

Typically, these approaches learn network weights using

large labeled datasets. At inference time, the trained net-

work layers sequentially process a given 2D image to make

a prediction. Despite being a successful approach across

*Indicates equal contribution.
²
https://light.princeton.edu/inverse-rendering-tracking/

disciplines, from robotics to health, and effective in operat-

ing at real-time rates, this approach also comes with several

limitations: (i) Networks trained on data captured with a

specific camera/geography generalize poorly, (ii) they typ-

ically rely on high-dimensional internal feature representa-

tions which are often not interpretable, making it hard to

identify and reason about failure cases, and, (iii) it is chal-

lenging to enforce 3D geometrical constraints and priors

during inference.

We focus on multi-object tracking as a task that must

tackle all these challenges. Accurate multi-object tracking

is essential for safe robotic planning. While approaches

using LiDAR point clouds (and camera image input) are

successful as a result of the explicitly measured depth

[12, 15, 17, 20±23], camera-based approaches to 3D multi-

object tracking have only been studied recently [13, 14, 24±

31]. Monocular tracking methods, typically consisting of

independent detection, 3D dynamic models, and matching

modules, often struggle as the errors in the distinct modules

tend to accumulate. Moreover, wrong poses in the detec-

tions can lead to ID switches in the matching process.

We propose an alternative approach that recasts visual

inference problems as inverse rendering (IR) tasks, jointly

solving them at test time by optimizing over the latent space

of a generative object representation. Specifically, we com-

bine object retrieval through the inversion of a rendering

pipeline and a learned object model with a 3D object track-

ing pipeline. This approach allows us to simultaneously

reason about an object’s 3D shape, appearance, and three-

dimensional trajectory from monocular image input only.

The location, pose, shape, and appearance parameters cor-

responding to the anchor objects are then iteratively re-

fined via test-time optimization to minimize the distance be-

tween their corresponding generated objects and the given

input image. Rather than directly predicting scene and ob-

ject attributes, we optimize over a latent object representa-

tion to synthesize image regions that best explain the ob-

served image. We match the inverse-rendered objects then

be matched by comparing their optimized latents.

Our method hinges on an efficient rendering pipeline

and generative object representation at its core. While
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the approach is not tied to a specific object representa-

tion, we adopt GET3D [32] as the generative object prior,

that is only trained on synthetic data to synthesize tex-

tured meshes and corresponding images with an efficient

differentiable rendering pipeline. Note that popular implicit

shape/object representations do either not support class-

specific priors [33, 34], or require expensive volume sam-

pling [35].

The proposed method builds on the inductive geometry

priors embedded in our rendering forward model, solving

different several tasks simultaneously. Our method refines

object pose as a byproduct, merely by learning to represent

objects of a given class. Recovering object attributes as a re-

sult of inverse rendering also provides interpretability ªfor

freeº: once our proposed method detects an object at test

time, it can extract the parameters of the corresponding rep-

resentation alongside the rendered input view. This ability

allows for reasoning about failure cases.

We validate that the method naturally exploits 3D ge-

ometry priors and generalizes across unseen domains and

unseen datasets. After training solely on simulated data,

we test on nuScenes [36] and Waymo [37] datasets, and al-

though untrained, we find that our method outperforms both

existing dataset-agnostic multi-object tracking approaches

and dataset-specific learned approaches [13] when operat-

ing on the same detection inputs. In summary, we make the

following contributions.

• We introduce an inverse rendering method for 3D-

grounded monocular multi-object tracking. Instead of

formulating tracking as a feed-forward prediction prob-

lem, we propose to solve an inverse image fitting problem

optimizing over the latent embedding space of generative

scene representations.

• We analyze the single-shot capabilities and the inter-

pretability of our method using the generated image pro-

duced by our method during test-time optimization.

• Trained only on synthetic data, we validate the general-

ization capabilities of our method by evaluating on un-

seen automotive datasets, where the method compares fa-

vorably to existing methods when provided the same de-

tection inputs.

Scope and Limitations While facilitating inverse ren-

dering, the iterative optimization in our method makes

it slower than classical object-tracking methods based on

feed-forward networks. We hope to address this limita-

tion in the future by accelerating the forward and backward

passes with adaptive level-of-detail rendering techniques.

2. Related Work

Object Tracking is a challenging visual inference task that

requires the detection and association of multiple objects.

Specific challenges include highly dynamic scenes with par-

tial or full occlusions, changes in appearance, and varying

illumination conditions [38±40]. In this section, we first

review classical tracking methods and deep detection and

association methods. Following, we review 3D scene rep-

resentations and inverse rendering.

3D Object Tracking. An extensively investigated line of

work proposes tracking by detection, i.e., to solve the task

by first detecting scene objects and then learning to find

the associations between the detected objects over multi-

ple frames [41±47]. In addition to association, 3D tracking

requires the estimation of object pose. Since directly pre-

dicting 3D object pose is challenging [48], most existing

3D tracking methods rely on some explicit depth measure-

ments in the form of Lidar point clouds [15, 49, 50], hybrid

camera-lidar measurements [48] or stereo information[28,

51]. Weng et al. [16] proposed a generic tracking method

that combines a 3D Kalman filter and the Hungarian algo-

rithm for matching on an arbitrary object detector.

Only recent work [13, 14, 24±26] tackles monocular 3D

tracking. Hu et al. [24] relies on similarity across different

viewpoints to learn rich features for tracking. DEFT [14]

jointly trains the feature extractor for detection and tracking

using the features to match objects between frames. In con-

trast, Marinello et al. [26] use an off-the-shelf tracker and

enhance image features with 3D motion and bounding box

information. Zhou et al. [13] rely on a minimal input of two

frames and predicted heatmaps to perform simultaneous de-

tection and tracking. Some 3D tracking methods rely on

motion models [52±54] such as the Kalman Filter [55]. Re-

cent methods also make use of optical flow predictions [56],

learned motion models metrics [29], long short-term mem-

ory modules (LSTM) [14, 24, 26] and more recently trans-

former modules [30, 31]. All the above methods rely on

a feed-forward image encoder backbone to predict object

features. Departing from this approach, we propose a multi-

object tracking method that directly optimizes a consistent

three-dimensional reconstruction of objects and 3D motion

via an inverted graphics pipeline.

3D Scene Representations, Generation and Neural Ren-

dering. A growing body of work addresses joint 3D re-

construction and detection from monocular cameras. Ex-

isting methods have exploited different geometrical pri-

ors [57] for this task, including meshes [58], points [59],

wire frames [60], voxels [61] CAD models or implicit func-

tions [62] signed distance functions (SDFs) [63]. Early

approaches in neural rendering represent the scene explic-

itly by, e.g., encoding texture or radiance on the estimated

scene geometry [64] or using volumetric pixels (Voxels)

[65]. Other methods represent 3D scenes implicitly. This

includes the successful NeRF method [34] and variants that

have been extended to dynamic scenes [62, 66, 67]. To al-
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Figure 1. Inverse Rendering for Monocular Multi-Object Tracking. For each detection, we initialize the embedding codes of an object

generator zS for shape and zT for texture. The generative object prior model is frozen and only embedding codes, pose, and size of each

object instance are optimized through inverse rendering to best fit the image observation. Inverse-rendered texture and shape embeddings

and refined object locations are provided to the matching stage to match predicted states of tracked objects of the past and new observations.

Matched and new tracklets are updated, and unmatched tracklets are ultimately discarded before predicting states in the next step.

low the handling of semi-transparent objects, these repre-

sentation models refrain from explicitly representing object

surfaces. Signed distance fields represent surfaces of wa-

tertight objects as a zero level-set [33, 68, 69] modeling a

Signed Distance Function (SDF). Adding textures to sur-

face models allows for disentangling object shape from ap-

pearance [70, 71]. In recent years ideas from generative

imaging models, such as GANs [72, 73], VAEs and dif-

fusion models [74, 75] have been applied to the 3D do-

main [32, 35, 69, 76]. Generative models can either be

used for pure generation [35] or provide prior knowledge

for downstream tasks. Starting from a good prior can dras-

tically improve the efficiency of inverse tasks, such as IR.

While Gina3D [35] provides a prior on in-the-wild objects

its volumetric rendering pipeline adds another layer of com-

plexity sampling the full volume. We therefore rely on

GET3D [32] generating a mesh as a prior object model and

renders through rasterization, profiting from from graphic

pipelines optimized over decades.

Inverse Rendering. Inverse rendering methods conceptu-

ally ªinvertº the graphics rendering pipeline, which gen-

erates images from 3D scene descriptions, and instead es-

timates the 3D scene properties, i.e., geometry, lighting,

depth, and object poses based on input images. Recent

work [77±79] successfully achieved joint optimization of

a volumetric model and unknown camera poses from a set

of images merely by back-propagating through a rendering

pipeline. Another area of inverse rendering focuses on ma-

terial and lighting properties [80±82], to find a representa-

tion that best models the observed image.

To the best of our knowledge, we present the first method

that employs an inverse rendering approach for multi-object

3D tracking, without any feed-forward prediction of object

features ± only given 2D image input.

3. Tracking by Inverse Rendering

We cast object tracking as a test-time inverse rendering

problem that fits generated multi-object scenes to the ob-

served image frames. First, we discuss the proposed scene

representation we fit. Next, we devise our rendering-based

test-time optimization at the heart of the proposed track-

ing approach. The full tracking pipeline is illustrated in

Fig. 1. We employ an object-centric scene representation.

We model the underlying 3D scene for a frame observation

as a composition of all object instances without the back-

ground scene.

3.1. Scene Generation

Object Prior. To represent a large, diverse set of instances

per class, we define each object instance o as a sample from

a distribution O over all objects in a class, that is

O ∼ f (o) , (1)

where f is a learned function over a known prior object dis-

tribution. Here, the prior distribution is modeled by a differ-

entiable generative 3D object model op = G (zp), that maps

a latent embedding zp to an object instance op, the object p.

In particular, the latent space comprises two disentangled

spaces zS and zT for shape S and texture T .

3



Given an object-centric camera projection Pc = KcT,

where Kc is the camera intrinsic matrix, a transformation

T = [R|t] to camera c that is composed of rotation R and

translation t, a differentiable rendering method R (op, c),
such as rasterization for meshes or volumetric rendering for

neural fields, this renders an image Ic,p, a 2D observation

of the 3D object op. While our method is general, imple-

mentation details of the generator and rendering method are

provided in the implementation section.

Scene Composition. We model a multi-object scene as a

scene graph composed of transformations in the edges and

object instances in the leaf nodes, similar to Ost et al. [62].

Object poses are described by the homogeneous transfor-

mation matrix Tp ∈ R
4x4 with the translation tp and orien-

tation Rp in the reference coordinate system. The camera

pose Tc ∈ R
4x4 is described in the same reference coor-

dinate system. The relative transformation of the camera c

and each object instance p can be computed through edge

traversal in the scene graph as

Tc,p = diag

(

1

sp

)

TpT
−1

c , (2)

where the factor sp is a scaling factor along all axes to al-

low a shared object representation of a unified scale. This

canonical object scale is necessary to represent objects of

various sizes, independent of the learned prior on shape and

texture. The object centric projection Pc,p = KcTc,p is

used to render the RGB image Ic,p ∈ RH×W×3 and mask

Mc,p ∈ [0, 1]
H×W

for each object/camera pair.

Individual rendered RGB images are ordered by object

distance ∥tc,p∥, such that p = 1 is the shortest distance to c.

Using the Hadamard product of the non-occluded mask γp
all No, object images are composed into a single image

Îc =

No
∑

k=1

R (G (zS,p, zT,p) ,Pc,p) ◦ γp, where

γp = max

((

Mc,p −

p
∑

q=1

Mc,q

)

,0H×W

)

,

(3)

where instance masks are generated in the same fashion.

3.2. Inverse Multi-Object Scene Rendering.

We invert the differentiable rendering model defined in

Eq. 3 by optimizing the set of all object representations in

a given image Ic with gradient-based optimization. We as-

sume that, initially, each object op is placed at a pose T̂c,p

and scaled with ŝp near its underlying location. We rep-

resent object orientations in their respective Lie algebraic

form so(3). We further sample an object embedding ẑS,p
and ẑT,p in the respective latent embedding space.

For in-the-wild images, Ic is not just composed of sam-

pled object instances but other objects and the scene back-

ground. Since our goal for tracking is the reconstruction of

all object instances of specific object classes, a naÈıve ℓ2 im-

age matching objective of the form ∥Ic − Îc∥2 is noisy and

challenging to solve with vanilla stochastic gradient descent

methods. To tackle this issue, we optimize visual similarity

in the generated object regions instead of the full image. We

optimize only on rendered RGB pixels and minimize

LRGB = ∥
(

Ic − Îc

)

◦ M̂Ic∥2,

with M̂Ic = min
(

∑

Mc,p,1
)

.
(4)

The mask of all foreground/object pixels M̂Ic is computed

as the sum over all object masksMc,p in the frame rendered

by camera c. We employ a learned perceptual similarity

metric [83] (LPIPS) on object-centered image patches, that

is

Lperceptual = LPIPSpatch

(

Ic, Îc,p

)

. (5)

The combined loss function of our method is

LIR = LRGB + λLperceptual, (6)

which we optimize by refining the latent codes of shape and

appearance, position, rotation, and scale, leading to

ẑS,p, ẑT,p, ŝpt̂p, R̂p = arg min (LIR) . (7)

Instead of using vanilla stochastic gradient descent meth-

ods, we propose an alternating optimization schedule of

distinct properties that includes aligning zS before zT , to

reduce the number of total optimization steps. A detailed

implementation and validation of all design choices of the

optimization are presented in the Supplementary Material.

Optimization. To solve Eq. 6, we propose an optimiza-

tion schedule, that first optimizes a coarse color, and then

jointly optimizes the shape and the positional state of each

object. As the backbone of the learned perceptual loss, we

use a pre-trained VGG16 [84] and utilize individual output

feature map similarities at different points of the optimiza-

tion. We find that color and other low-dimensional features

are represented in the initial feature maps and those are bet-

ter guidance for texture than high-dimensional features as

outputs of the later blocks. These features have a more in-

formative signal for shape and object pose. We use the av-

erage of the first and second blocks in the optimization for

zT , while the combined perceptual similarity loss guides

the optimization of zT and the pose.

We initialize all object embeddings with the same fixed

values inside the embedding space, take two optimization

steps solely on color utilizing the described loss, and then
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Figure 2. Tracking via Inverse Neural Rendering on nuScenes [36]. From left to right, we show (i) observed images from diverse scenes

at timestep k = 0; (ii) an overlay of the optimized generated object and its 3D bounding boxes at timestep k = 0, 1, 2 and 3. The color of

the bounding boxes for each object corresponds to the predicted tracklet ID. We see that even in such diverse scenarios, our method does

not lose any tracks and performs robustly across all scenarios, although the dataset is unseen.

freeze the color for the joint optimization of the shape and

pose. We regularize out-of-distribution generations with

Lembed = αT zT + (1− αT )z
avg
T + αSzS + (1− αS)z

avg
S

(8)

that minimizes a weighted distance in each dimension with

respect to the average embedding zS or zT respectively. For

optimization, we use the ADAM optimizer [85]. The final

loss function combines the RGB, perceptual cost and the

regularization with λ = 10, αT = 0.7 and αS = 0.7 of

Eq. 6 and Eq. 8. We freeze color after two steps of opti-

mization and optimize the shape and scale for three more

steps, adding translation and rotation only in the last two

steps.

3.3. 3D MOT via Inverse Rendering

Next, we describe the proposed method for tracking mul-

tiple dynamic objects with the inverse rendering approach

from above. The approach tracks objects in the proposed

representation across video frames and is illustrated in

Fig. 1. For readability, we omit p and the split of z into

zS and zT in the following.

Initial Object and Pose Estimation. Common to tracking

methods, we initialize with a given initial 3D detection on

image Ic,k, and we set object location tk = [x, y, z]k, scale

sk = max(wk, hk, lk) using the detected bounding box di-

mensions and heading ψk in frame k. We then find an opti-

mal representation zk, and a refined location and rotation of

each object o via the previously introduced inverse render-

ing pipeline for multi-object scenes. The resulting location,

rotation, and scale lead to the observation vector

yk = [tk, sk, ψk]. (9)

Prediction. While not confined to a specific dynamics

model, we use a linear state-transition model A, for the ob-

jects state xk = [x, y, z, s, ψ, w, h, l, x′, y′, z′]k, and a for-

ward prediction using a Kalman Filter [55], a vanilla ap-

proach in 3D object tracking [16]. An instantiated object in

k-1 can be predicted in frame k as

x̂k|k−1 = Ax̂k−1|k−1

and Pk|k−1 = APk−1|k−1A
T +Q,

(10)

with the predicted a priori covariance matrix modeling the

uncertainty in the predicted state.

Interpretable Latent Matching. In the matching stage, all

optimal object representations op in frame k are matched

with tracked and lost objects from k − 1. Objects are

matched based on appearance and location with a weighted

affinity score

A = wIoUAIoU,3D + wzAz + wcDcentroid, (11)

where AIoU,3D is the IoU of the 3D boxes computed over

the predictions of tracked object predictions xk|k−1 and re-

fined observations. Here, the object affinity Az is computed

as the cosine distance of tracked object latent embeddings z.

5



Input t0 Tracked t0 Tracked t1 Tracked t2 Tracked t3

H
ig

h
w

ay
U

rb
an

Figure 3. Without changing the model or training on the dataset, our proposed method can generalize well to the Waymo Open Driving

Dataset [37]. Similar to Fig 2, from left to right, we show (i) observed images from diverse scenes from the dataset at timestep k = 0; (ii)

an overlay of the closest generated object and predicted 3D bounding boxes at timestep k = 0, 1, 2 and 3. The color of the bounding boxes

for each object corresponds to the predicted tracklet ID. Our method does not lose any tracks even on a different unseen dataset in diverse

scenes, validating that the approach generalizes.

In addition to that the Euclidean distance between the cen-

terDcentroid adds additional guidance. We add no score for

unreasonable distant tracked objects and detections.

We compute the best combination of tracked and de-

tected objects using the Hungarian algorithm [86], again

a conventional choice in existing tracking algorithms.

Matched tracklet and object pairs are kept in the set of

tracked objects and the representation of the correspond-

ing detections is discarded, while unmatched detections are

added as new objects. Unmatched tracklets are set to lost

with a lost frame counter of one. Objects that were not de-

tected in previous frames are set to tracked and their counter

is reset to 0. Objects with a lost frame count higher than

lifespan Nlife, or outside of the visible field, are removed.

Track and Embedding Update. In the update step, we

refine each object embedding z and motion model yk given

the result of the matching step. Embeddings are updated

through an exponential moving average

zk,EMA = βzk+(1−β)zk−1,EMA with β =
2

T − 1
(12)

over all past observations of the object, where T is the num-

ber of observed time steps of the respective instance. The

observation yk is used to update the Kalman filter. The op-

timal Kalman gain

Kk = Pk|k−1H
T (HPk|k−1H

T +R)−1 (13)

is updated to minimize the residual error of the predicted

model and the observation. The observation yk is used to

estimate the object state as

x̂k|k = x̂k|k−1 +Kk(yk −Hx̂k|k−1) (14)

and with
Pk = Pk|k−1 −KkHPk|k−1 (15)

the a posteriori of the covariance matrix is updated.

3.4. Implementation Details

Representation Model. We employ the GET3D [32] archi-

tecture as object model G. Following StyleGAN [72, 73]

embeddings zT and zS are mapped to intermediate style

embeddings wS and wT in a learned W-space, which we

optimize over instead of Z-space. Style embeddings con-

dition a generator function that produces tri-planes repre-

senting object shapes as Signed Distance Fields (SDFs)

and textures as texture fields. We deliberately train our

generator on synthetic data only, see experiments below.

Differentiable marching tetrahedra previously introduced in

DMTet [88] extract a mesh representation and Images are

rendered with a differentiable rasterizer [89].

Computational Cost. Each IR optimization step in our im-

plementation takes ∼ 0.3 seconds per frame. The gener-

ation and gradient computation through the generator de-

termines the computational cost of the method. How-

ever, we note that the rendering pipeline, contributing

the majority of the computational cost of the generator,

has not been performance-optimized and can be naively

parallelized when implemented in lower-level GL+CUDA

graphics primitives.

4. Experiments

In the following, we assess the proposed method. Hav-

ing trained our generative scene model solely on simu-

lated data [90], we test the generalization capabilities on the

nuScenes [36] and Waymo [37] dataset ± both are unseen by

the method. We analyze generative outputs of the test-time

optimization and compare them against existing 3D multi-

object trackers [13, 16, 24, 29, 31] on camera-only data.
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Training Method AMOTA ↑ AMOTP (m) ↓ Recall ↑ MOTA ↑ Modality

Data Unseen

× PF-Track [30] 0.622 0.916 0.719 0.558 Camera

× QTrack [29] 0.692 0.753 0.760 0.596 Camera

× QD-3DT [24] 0.425 1.258 0.563 0.358 Camera

✓ QD-3DT [24] (trained on WOD) 0.000 1.893 0.226 0.000 Camera

× (CP) CenterTrack [13] 0.202 1.195 0.313 0.134 Camera

✓ (CP) AB3DMOT [16] 0.387 1.158 0.506 0.284 Camera

✓ (CP) Inverse Neural Rendering (ours) 0.413 1.189 0.536 0.321 Camera

Table 1. Quantitative Evaluation for Camera-only Multi-Object Tracking. Quantitative results on ªcarsº in the test split of the

nuScenes tracking dataset [36]. Our IR-based tracker outperforms AB3DMOT [16] on all metrics and CenterTrack [13] on accuracy. All

three methods use the same detection backbone for fair comparison, while only CenterTrack requires end-to-end training on the dataset.

Additional results show on-par performance of our method with QD-3DT [24] trained on nuScenes [36]. QD-3DT trained on the Waymo

Open Dataset (WOD) does not generalize to nuScenes and does not achieve competitive results. Only very recent transformer-based

methods, such as PF-Track [30] and the metric learning approach of Q-Track [29] achieve a higher score. However, these methods require

end-to-end training on each dataset. ªCPº denotes here the vision-only version of CenterPoint [87] was used for object detection. Bold

denotes best and underlined second best for methods that did not train on the dataset or use the same detection backbone.

4.1. Single-Shot Object Retrieval and Matching

Although trained only on general object-centric synthetic

data, ShapeNet [90], our method is capable of fitting a sam-

ple from the generative prior to observed objects in real

datasets that match the vehicle type, color, and overall ap-

pearance closely, effectively making our method dataset-

agnostic. We analyze the generations during optimization

in the following.

Optimization. Given an image observation and coarse de-

tections, our method aims to find the best 3D representa-

tion, including pose and appearance, solely through inverse

rendering. In Fig. 4 we analyze this iterative optimization

process, following a scheduled optimization as described in

Sec. 3.4. We observe that the object’s color is inferred in

only two steps. Further, we can observe that even though

the initial pose is incorrect, rotation and translation are op-

timized jointly through inverse rendering together with the

shape and scale of the objects, recovering from sub-optimal

initial guesses. The shape representation close to the ob-

served object is reconstructed in just 5 steps.

4.2. Evaluation

To provide a fair comparison of 3D multi-object tracking

methods using monocular inputs, we compare against exist-

ing methods by running all our evaluations with the method

reference code. We only evaluate methods, that consider

past frames, but have no knowledge about future frames,

which is a different task. While our method does not store

the full history length of all images, we allow such mem-

ory techniques for other methods. We only consider purely

mono-camera-based tracking methods.We note that, in con-

trast to our method, most baseline methods we compare to

are finetuned on the respective training set. For all two-

stage detect-and-track methods, we use CenterPoint [15] as

the detection method. We compare to CenterTrack [13] as

an established learning-based baseline, and present results

of the very recent PFTrack [30], a transformer-based track-

ing method, Qtrack [29] as a metric learning method, and

QD-3DT [24] as an LSTM-based state tracker combined

with image feature matching. Of all learning-based meth-

ods, only CenterTrack [13] allows us to evaluate tracking

performance with identical detections. Finally, we compare

to AB3DMOT [16] that builds on an arbitrary 3D detection

algorithm and combines it with a modified Kalman filter to

track the state of each object. AB3DMOT [16] and the pro-

posed method are the only methods that are data-agnostic

in the sense that they have not seen the training dataset.

For a fair evaluation of these generalization capabilities in

learning-based methods, we include another version of QD-

3DT solely trained on the Waymo Open Dataset [37] and

evaluate on nuScenes [36]. We discuss the findings in the

following.

Validation on nuScenes. Tab. 1 reports quantitative results

on the test split of the nuScenes tracking dataset [36] on

the car object class for all six cameras. We list results for

the multi-object tracking accuracy (MOTA) [91] metric, the

AMOTA [16] metric, average multi-object tracking preci-

sion (AMOTP) [16] and recall of all methods. First, we

evaluate a version of QD-3DT [24] that has been trained

on the Waymo Open Dataset [37] (WOD) but tested on

nuScenes. This experiment is reported in row four of Tab. 1

and confirms that recent end-to-end detection and tracking

methods do not perform well on unseen data (see qualitative

results in the Supplementary Material). Moreover, perhaps

surprisingly, even when using use the same vision-only de-

tection backbone as in our approach, the established end-

to-end trained baseline CenterTrack [13], which has seen

7



Input Frame Initial Guess Texture Fitting Object Pose Fitting Shape Fitting

Input frame is faded for visibility.

Figure 4. Optimization Process. From left to right, we show (i) the observed image, (ii) the rendering predicted by the initial starting

point latent embeddings, (iii) the predicted rendered objects after the texture code is optimized (iv) the predicted rendered objects after the

translation, scale, and rotation are optimized, and (v) the predicted rendered objects after the shape latent code is optimized. The ground

truth images are faded to show our rendered objects clearly. Our method is capable of refining the predicted texture, pose, and shape over

several optimization steps, even if initialized with poses or appearance far from the target ± all corrected through inverse rendering.

the dataset, performs worse than our method. Our IR-based

method outperforms the general tracker AB3DMOT [16].

When other methods are given access to the dataset, re-

cent learning-based methods such as the end-to-end LSTM-

based method QD-3DT [24] perform on par. Only the most

recent transformer-based methods such as PF-Track [30]

and the QTrack [29], which employ a quality-based asso-

ciation model on a large set of learned metrics, such as heat

maps and depth, achieve higher scores. Note again, that

these methods, in contrast to the proposed method, have

been trained on this dataset and cannot be evaluated inde-

pendently of their detector performance.

We visualize the rendered objects predicted by our track-

ing method in Fig. 2. We show an observed image from

a single camera at time step k = 0, followed by ren-

dered objects overlaid over the observed image at time

step k = 0, 1, 2 and 3 along with their respective bounding

boxes, with color-coded tracklets. We see that our method

does not lose any tracks in challenging scenarios in diverse

scenes shown here, from dense urban areas to suburban traf-

fic crossings, and handles occlusions and clutter effectively.

By visualizing the rendered objects as well as analyzing the

loss values, our method allows us to reason about and ex-

plain success and failure cases effectively, enabling explain-

able 3D object tracking. The rendered output images pro-

vide interpretable inference results that explain successful

or failed matching due to shadows, appearance, shape, or

pose. For example, the blue car in the IR inference in Fig. 5

top row was incorrectly matched due to an appearance mis-

match in a shadow region. A rendering model including

ambient illumination may resolve this ambiguity, see fur-

ther discussion in the Supplementary Material.

Interpretation. Fig 5 shows the inverse rendered scene

graphs in isolation and birds-eye-view tracking outputs on

a layout level. Our method accurately recovers the object

pose, instance type, appearance, and scale. As such, our ap-

proach directly outputs a 3D model of the full scene, i.e.,

layout and object instances, along with the temporal his-

tory of the scene recovered through tracking ± a rich scene

(i) Input Frame (ii) INR 3D Generation (iii) INR BEV Layout

Figure 5. Layout Generation Through Inverse Rendering.

From left to right, we show (i) observed image from a single cam-

era for two scenes, (ii) test-time optimized inverse rendered (IR)

objects of class ªcarº, and (iii) Bird’s Eye View (BEV) layout of

the scene. In the BEV layout, black boxes represent ground truth,

and the colored boxes represent predicted BEV boxes. The bottom

shows a zoomed-in region at a 60 m distance (see BEV layout).

Even in this setting, our method recovers the coarse appearance,

shape of the objects, pose, and size,

representation that can be directly ingested by downstream

planning and control tasks, or simulation methods to train

downstream tasks. As such, the method also allows us to

reason about the scene by leveraging the 3D information

provided by our predicted 3D representations. The 3D lo-

cations, object orientations, and sizes recovered from such

visualizations can not only enable us to explain the predic-

tions of our object tracking method, especially in the pres-

ence of occlusions or ID switches but also be used in other

downstream tasks that require rich 3D understanding, such

as planning.

Validation on Waymo. Next, we provide qualitative results

from the 3D tracking on the validation set of WOD [37] in

Fig. 3. The only public results on the provided test set are

presented in QD-3DT [24], which may indicate it fails on

this dataset. While the size of the dataset and its variety

is of high interest for all autonomous driving tasks, Hu et

al. [24] conclude that vision-only test set evaluation is not

representative of a test set developed for surround view lidar

data on partial unobserved camera images only. As such,

we provide here qualitative results in Fig. 3, which validate

8



Table 2. Ablation Experiments.

(a) Input Frame (b) Full (ours) (c) No Schedule

Input frame is faded for visibility.
(a) Effect of Optimization Schedule. (a) observed image, (b) optimized

generations using the proposed schedule in Sec. 3, (c) optimized genera-

tions using no schedule. This supports the quantitative to the left.

Method AMOTA ↑ Recall ↑ MOTA↑
LIR & Lembed - Eq.8 0.112 0.264 0.113

LIR - Eq.6 0.103 0.236 0.112

Lperceptual - Eq. 5 0.100 0.251 0.101

LRGB - Eq. 4 N/A N/A N/A

No Schedule 0.102 0.224 0.110

(b) Optimization Schedule and Loss Components. Ablations were run

on a small subset of the nuScenes [36] validation set. LRGB fails due to

the optimizer fitting objects to the background instead, increasing the size

of each object resulting in out of memory.

that the method achieves tracking of similar quality on all

datasets, providing a generalizing tracking approach. We

show that our method does not lose tracks on Waymo scenes

in diverse conditions.

4.3. Ablation Experiments

As ablation experiments, we analyze the optimization

schedule, the INR loss function components, and the

weights of the tracker, applying them to a subset of scenes

from the nuScenes validation set. We deliberately select

this smaller validation set due to its increased difficulty.The

top row of Tab. 2b lists the quantitative results from our

ablation study of the optimization scheduler. Our findings

reveal a crucial insight: the strength of our method lies not

in isolated loss components but in their synergistic integra-

tion. Specifically, the amalgamation of pixel-wise, percep-

tual, and embedding terms significantly enhances AMOTA,

MOTA, and Recall metrics.

Moreover, the absence of an optimization schedule led to

less robust matching as quantitative and qualitative results

in Tab. 2a reveal. However, the core efficacy of our track-

ing method remained intact as indicated in the last row of

Tab. 2b. This nuanced understanding underscores the im-

portance of component interplay in our method.

5. Conclusion

We investigate inverse neural rendering as an alternative

to existing feed-forward tracking methods. Specifically,

we recast 3D multi-object tracking from RGB cameras as

an inverse test-time optimization problem over the latent

space of pre-trained 3D object representations that, when

rendered, best represent object instances in a given input

image. We optimize an image loss over generative latent

spaces that inherently disentangle shape and appearance

properties. This approach to tracking also enables exam-

ining the reconstructed objects, reasoning about failure sit-

uations, and resolving ambiguous cases ± rendering object

layouts and loss function values provides interpretability

ªfor freeº. We validate that the method has high generaliza-

tion capabilities, and without seeing a dataset, outperforms

existing tracking methods’ generalization capabilities. In

the future, we hope to investigate not only object detection

with inverse rendering but broad, in-the-wild object class

identification via conditional generation methods ± unlock-

ing analysis-by-synthesis in vision with generative neural

rendering.
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