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Abstract

The use of automated machine learning-based skin lesion diagnosis systems has a huge

potential to not only speed up the diagnosis process for deadly skin conditions such melanoma,

but also help bridge disparities in healthcare and dermatology in care for patients with darker

skin [1]. However, the overrepresentation of images of lighter skin in skin lesion datasets [2]

used to train such models could correspond to discrepancies in accuracy across different skin

tones [3]. This paper trains a model to classify skin conditions based on images of skin lesions

from the Fitzpatrick17k dataset [4]. A confidence interval on the accuracy of the trained model

across the different skin types is analyzed using the bootstrap method [11] in order to determine

the existence of bias in the trained model.

1. Introduction

In the United States, images of skin conditions on darker skin are underrepresented in

dermatology residency programs [13], textbooks [14], dermatology research [15] and

dermatology diagnoses [16]. As a result, physicians are mostly trained to recognise skin

conditions on lighter skin [3]. Since skin conditions manifest themselves differently on lighter

and darker skin (for instance, with a different shade of redness, pigmentation, discoloration etc.),

skin conditions are often misdiagnosed on patients with darker skin [2]. Thus, the lack of training



physicians get in diagnosing skin conditions on darker skin harms care for patients of color.

Therefore, the emergence of deep neural networks that can classify skin conditions such as

cancer with human-level accuracy [1] presents a huge opportunity to improve healthcare and

bridge diagnosis accuracy disparities in dermatology as well as in healthcare at large [4].

Moreover, automating the process of diagnosis also promises to speed up the process of

diagnosis, allowing the early detection of deadly skin diseases such as melanoma early. Since

early detection of skin conditions such as melanoma are crucial for good prognosis, the use of

deep learning models to assist diagnosis can help develop early-detection techniques and save

thousands of lives.

However, even the datasets used to train these neural networks are mostly made up of

images of skin conditions on lighter skin. For example, the Fitzpatrick17k dataset [4] containing

images of skin lesions corresponding to 114 different skin conditions contains almost twice the

number of images displaying lighter skin than darker skin [4]. The lack of consideration of

subgroups within a population was hypothesized as a possible cause for the large disparity across

gender and skin color for facial recognition in Buolamwini and Gebru’s work [5]. Thus, it is

plausible that this overrepresentation of light skin in skin lesion datasets may lead to diagnosis

accuracy disparities across skin color, thereby even further increasing healthcare disparities in

dermatology rather than bridging them, should such biased skin models be deployed in the real

world.

Thus, the goal of this project is to rigorously analyze the existence of accuracy

discrepancies across skin color and their statistical significance in a neural network trained on

one such biased dataset - Fitzpatrick17k [4]. First, a machine learning model is trained such that

it takes as input an image of a skin lesion and outputs a label for the skin condition displayed in



the input image. Next, we examine the distribution of image labels in the dataset used in order to

aid our analysis of bias. Finally, we examine the discrepancies in accuracy of the trained model

on the testing data to assess the existence of bias. We use the bootstrapping method [11] to

determine if any accuracy discrepancies are statistically significant.

A rigorous analysis of bias in a dataset and accuracy disparities across subpopulations in

a model is crucial before deploying such models into practice. Such an analysis can help pave the

way for the development of models that are more accurate for underrepresented subpopulations,

that can also serve as discrimination detectors [4]. The analysis of model bias also helps identify

opportunities to address this bias, such as collecting additional data from the underrepresented

groups or disentangling the source of the disparities in accuracy [4].

Previous work conducted on skin lesion classification has focused on older datasets such

as the International Skin Imaging Collaboration (ISIC) dataset, which do not contain any skin

type or demographic labels (apart from the PAD-UFES-20 dataset with skin type labels on 579

out of 1,373 images [17]). In addition, previous analysis such as in [12] is mostly focussed on

discrepancies due to spurious correlations rather than discrepancies due to underrepresentation of

subgroups in a dataset.

Thus, the main challenge in conducting analysis on bias due to underrepresentation of

darker skin in the dataset is a lack of large enough datasets containing skin type or demographic

labels in order to be able to conduct any rigorous analyses on accuracy disparities. This challenge

is compounded by the difficulty of the task of classifying skin lesions from images, owing to the

vast variation in the appearance of skin lesions, as well as the subtlety of the cues that distinguish

malignant and benign conditions.



With the release of the Fitzpatrick17k in 2021, it is now possible to conduct such an

analysis on bias, as the dataset contains images with skin condition labels on three levels of

granularity – 3 low-level, 9 mid-level and 114 high-level labels. The paper introducing

Fitzpatrick17k [4] trains a model for the low level classification. Their analysis reveals the

underrepresentation of darker skin in online dermatology atlases, and determine that the model is

most accurate on skin types similar to those it was trained on [4].

However, no analysis has been done on models trained on the high or mid-level labels.

Thus, in this project, we focus our analysis on the model trained to classify images by the mid

level categories instead of the low level categories, for reasons discussed later in the paper.

Moreover, the implementation of the model used in the original paper is changed in order to

reduce the time required for training as well as remove the need for a GPU to train.

Feature vectors for each image are obtained by conducting one forward pass of the image

and then storing the values obtained at the penultimate layer of AlexNet [9] pretrained on

ImageNet [10] after this forward pass. A linear classifier is then trained independently on these

image feature vectors and the ground truth labels. Finally, the accuracies across skin types are

computed and analyzed.

The analysis conducted fails to conclude that a statistically significant discrepancy in

accuracy exists between images of different skin types. However, this does not necessarily mean

that no bias exists – only that the current analysis does not reveal it.



In the remainder of this paper, we first discuss in depth the prior work done on the

analysis of bias in skin lesion classification, and why it does not meet the goal of this paper. We

also give more detail on the Fitzpatrick17k dataset and the labels on each image. Next, we

introduce our key novel idea and how it drives our approach. We then describe the

implementation of the model in further detail. Finally, we present and discuss in detail our

analysis of accuracy disparities by skin type

2. Problem Background

2.1. The Fitzpatrick17k dataset

The Fitzpatrick17k dataset contains 16,577 images [4] of a skin lesion or several lesions.

Each image is annotated with

1. Skin condition labels  [4]

2. Skin type labels based on the Fitzpatrick scoring system  [4]

The images are obtained from the following two online dermatology atlases, containing

images with their corresponding skin condition labels:

1. DermaAmin: 12,672 images  [4]

2. Atlas Dermatologico: 3,905 images  [4]

Although the labels on these images are not known to be confirmed via a biopsy [4],

these labels have been used and cited by computer vision literature [4]. Moreover, the paper by

Groh et al. also conducts a quality check on the labels of the images on the dataset by asking

board-certified dermatologists to evaluate the accuracy of 3% of the full dataset [4], consisting of

a random sample of 504 images [4]. The quality check confirms that the error rate on the

sampled dataset is consistent with the average error rate of humans of 3.4% in the most



commonly used test datasets in computer vision, natural language processing and audio

processing [4].

From the images obtained from the aforementioned online dermatology atlases, a subset

of images are chosen to be annotated with Fitzpatrick skin type labels. 22 categories of skin

conditions that were either too broad, with images of poor quality or represented a rare hereditary

skin disease were excluded from being in the dataset [4]. Thus, the final dataset contains images

of skin lesions corresponding to 114 different skin conditions, with at least 53 images and at

most 653 images of each of the 114 skin conditions represented [4].

In addition to the low-level labels for the 114 specific skin conditions displayed in the

image, each image is also annotated with the two additional aggregated levels of skin condition

classification labels. These aggregated levels of skin condition labels are based on the

taxonomies developed in the paper by Esteva et al. [8] which were shown to be helpful in

improving the explainability of deep learning models to classify skin lesions on the ISIC 2017

and 2018 dataset [8].

The highest level categories split the 114 labels into three broad categories. The three

high level categories and number of images labeled with this category are given in Table 1

below.

High-level category label Number of images

Benign lesions 2,234

Malignant lesions 2,263

Non-neoplastic lesions 12,080
Table 1: High-level categories and number of images in each category in the dataset []



At a more granular level, the 114 labels are split into 9 mid level categories. Each of the 9

mid-level categories and the number of images in each category is shown in Table 2 below.

Mid-level category label Number of images

images labeled inflammatory 10,886

malignant epidermal 1,352

genodermatoses 1,194

benign dermal 1,067

benign epidermal 931

malignant melanoma 573

benign melanocyte 236

malignant cutaneous lymphoma 182

malignant dermal 156
Table 2: Mid level categories and number of images in each category in the dataset []

Each of the images (apart from the images in the 22 categories chosen to be excluded

from the dataset) are annotated by labels based on the Fitzpatrick scoring system by a team of

human annotators from Scale AI [4]. For a small subset of images in the dataset, the Fitzpatrick

skin type could not be identified by the annotators, for whom the Fitzpatrick skin type is labeled

‘unknown’. The Fitzpatrick labeling system is based on a six-point scale, originally created to

classify sun reactivity of skin as well as adjusting dermatology medicine according to skin color

[18]. However, more recently, labels based on the Fitzpatrick scale have been used to evaluate

fairness and model accuracy across skin type in computer vision [5], as they are assumed to

serve as a proxy for race and ethnicity. It is important to note, however, that Fitzpatrick labels do

not always perfectly align with race and do not capture the full diversity of skin types [19].

Nevertheless, using Fitzpatrick labels allows us to at least begin to evaluate algorithmic fairness

based on skin color.



2.2. Related Work

Most prior analysis on skin lesion classification models has been done on older datasets

such as the International Skin Imaging Collaboration (ISIC) dataset. Apart from the

PAD-UFES-20 [] dataset, none of the public skin lesion image datasets at the ISIC Skin Image

Analysis workshop at CVPR 2021, such as Derm7pt [20], Dermofit Image Library [4], ISIC

2018 [21], ISIC 2019 [22], ISIC 2020[22], MED-NODE [4], PH2 [4], SD-128 [4], SD-198 [4]

and SD-260 [4] contain any skin type or demographic labels, and even the PAD-UFES-2 [17]

dataset only contains skin type labels for only 579 out of 1,373 images [17]. Thus, conducting

any robust analysis of accuracy based on skin type was difficult until the release of the

Fitzpatrick17k dataset.

Bissoto et al.’s paper, (De)Constructing Bias on Skin Lesion Datasets, proposes a set of

experiments that reveal positive and negative biases in existing skin lesion datasets and models

trained on them [12]. The paper’s analysis leads to some concerning results – that the trained

model seems to correctly classify skin lesion images even when all information about the lesion

is removed from the image [12]. This strongly suggests that the model trained is learning some

spurious correlations in order to make its prediction. They conduct their analysis on the

Interactive Atlas of Dermoscopy (Atlas) dataset as well as the International Skin Imaging

Collaboration (ISIC) Archive dataset. Neither of these datasets contain any labels indicating skin

type or race, and the paper conducts no analysis of bias by skin color.



Thus, Groh et al. introduce the Fitzpatrick17k dataset with almost 17,000 images labeled

with skin type labels based on the Fitzpatrick scale. The images are obtained from two online

dermatology atlases: Atlas and DermAmin [4]. First, the paper analyzes the distribution of

images by Fitzpatrick skin type in the dataset, which is summarized in Table 3 below. It is

evident that there are significantly more images of lighter skin than darker skin in the dataset.

Skin type Number of images

Lightest skin types: 1 and 2 7,755

Middle skin types: 3 and 4 6,089

Darkest skin types: 5 and 6 2,168
Table 3: Distribution of images by skin type

In addition to the imbalance in the distribution of images by skin type, there is an

imbalance in skin types across skin condition labels. For example, there is at least one image for

each of the 114 skin conditions for skin types 1, 2 and 3. However, skin type 6 is only

represented in 89 skin conditions, i.e. 25 skin conditions have no examples on type 6 skin.

Groh et al. continuen their analysis by training a transfer learning model based on a

VGG-16 neural network architecture [23] pretrained on ImageNet [10]. They then replace the

last fully connected layer in this architecture with the following sequence of layers [4]:

1. Fully connected 256-unit layer

2. ReLU layer

3. Dropout layer with 40% change of dropping

4. Linear layer with number of predicted categories

5. Softmax layer



Next, Groh et al. evaluate the model's performance using the following five experiments

with different sets of training and testing data [4]. The experiments are summarized in Table 4

below.:

Experiment
number

Test set Train set

1 images labeled by a board-certified
dermatologist as diagnostic of the
labeled condition

Remaining data

2 randomly selected 20% of the
images where the random selection
was stratified on skin conditions

Remaining data

3 images from Atlas Dermatologico images from Derma Amin

4 images from DermaAmin images from Atlas Dermatologico

5 Remaining data images labeled as Fitzpatrick skin
types 1-2 (or 3-4 or 5-6)

Table 4: Experiments conducted by Groh et al. to evaluate accuracies across skin type

Through their analysis, they conclude that models trained on data from only two

Fitzpatrick skin types are most accurate on images of the closest Fitzpatrick skin types to images

they were trained on [4]. However, the paper does not conduct any analysis on whether these

accuracy disparities are statistically significant given the smaller size of the dataset and the lack

of training examples for the rarer skin conditions, especially for darker skin types.



3. Approach

Previous work by Groh et al. has only conducted a rigorous analysis on a model trained

to classify images on the 114 low level labels representing the specific skin conditions. In this

paper, we focus our analysis of bias on the nine mid-level category label classification. Since

each of the 9 mid-level categories have more images per label, any analysis on accuracy

discrepancies by skin type would be less noisy than the 114-way classification. Thus, any results

obtained would be more robust, i.e. it is more likely that there would be sufficient data to fully

evaluate accuracy disparities. Yet, the 9 mid-level categories give more fine-grained information

than the broad 3 high level category labels.

In this project, the implementation of the model used to train the 9-way classifier is

changed so as to reduce the time required for training. This reduces the computational cost and

hence the need for a GPU as well. This allows for the model to potentially be deployed in

applications where computational power such as a high performance GPU is not available or too

expensive to include, as well as allow the GPU to be used for other tasks so as to not waste

computational power.

4. Implementation

4.1. Transfer learning to train the classifier

Training a convolutional neural network (CNN) from scratch to be able to classify the

images into the 9 mid-level categories would be computationally expensive and time consuming.

Moreover, the dataset is of a relatively small size. Thus, instead of training a CNN from scratch,

transfer learning is used to build the model. As described in [24], transfer learning involves

pre-training a CNN on a very large dataset, and then using the CNN as an initialization or fixed

feature extractor for the intended task.



In this project, the AlexNet [23] architecture is used as the CNN, and is pretrained on

ImageNet [10], an image database containing 1.2 million images with 1000 categories. AlexNet

is a CNN architecture that competed in the ImageNet Large Scale Visual Recognition Challenge

[23] in 2012. This architecture was chosen since the AlexNet architecture has often been used in

other computer vision papers, making comparisons easier. ImageNet was chosen as the dataset

used for training since it is one of the largest and most widely used dataset for pretraining.

In particular, the pretrained CNN is used as a fixed feature extractor as follows. The last

fully connected layer, whose outputs are the 1000 task scores for each of the 1000 categories in

ImageNet, is removed [24]. Next, each image is forward-propagated once through this fixed

feature extractor, and the 4096-dimensional vector obtained at the last layer of this model (i.e.

the penultimate layer of the original CNN model) is used as the feature vector representing the

image[24]. These feature vectors are called CNN codes. For best performance, it is crucial that

these obtained CNN codes are ReLUd (i.e. thresholded at zero), since they were also thresholded

during the training of the AlexNet on ImageNet during the pre-training [24].

Once the 4096-D codes for all images are extracted, a linear classifier is trained such that

takes as input the CNN code of an image and outputs one of the 9 mid-level skin condition

labels. The linear classifier used in this project is the Stochastic Gradient Descent classifier, since

the SGD classifier can be trained much faster, and at a lower computational cost than other linear

classifiers like support vector machines (SVMs) or Softmax classifiers.



4.2 System overview

The flowchart in Figure 1 below shows the key steps involved in the training and

evaluation of the model. Each of the key steps are described in more detail below.

Figure 1: Flowchart showing the key steps involved in implementing the goal of the project



Step 1: Randomly shuffle the dataset.

This is done to ensure that the labels in the dataset are randomly distributed, so that any

conclusions drawn are not made due to the order of images in the dataset.

Step 2: Split the dataset into the train/validation and test set.

90% of the dataset is kept as the train/validation set, while the remaining 10 percent of

the dataset is used as the test set. Thus, the number of images in the train/validation and test set

are given as follows:

1. Train/validation set: 14919 images

2. Test set: 1658 images

Step 3: Load the Alexnet pretrained on ImageNet and remove the final classification layer

The original AlexNet architecture [23] is loaded pre-trained on ImageNet [10], i.e. with

all the final model parameters after the model was trained on the 1000-way classification task on

the ImageNet dataset [10]. The final fully connected 1000 unit layer is removed, such that the

last layer is the penultimate layer of the original model, with 4096 densely connected neurons

[23]. The architecture of the image feature extractor thus obtained is given in Figure 2 below.



Figure 2: Python representation of the architecture of the feature extractor obtained after
modifying AlexNet

Step 4: For each image, perform one forward pass through the modified AlexNet

architecture, and store the values at the last 4096 densely connected neurons as the CNN

codes for the image

The final layer of the modified AlexNet has 4096 units [23], the CNN codes obtained are

4096 dimensional vectors. Thus, the CNN codes obtained are 4096-dimensional vectors.

Step 5: Use 9-fold cross validation to determine the best regulariser value for the linear

classifier

K-fold cross validation is a statistical method used to compare and select the best

hyperparameters such as regularization values [25]. The method involves the following key steps

[]:

1. Shuffle the train/validation set randomly.

2. Split the rain/validation set into k groups (in this project, k is chosen to be 9)



3. For each of the unique possible combinations of hyperparameter values (in this

case, a given list of possible regularization factors):

a. For each unique group of the k groups, i.e. ‘folds’ created:

i. Take the group as the validation set

ii. Take the remaining groups as the train set

iii. Fit the linear classifier model on the train set

iv. Evaluate the performance of the model on the validation set using

a performance evaluation metric. In this paper, accuracy is the

metric used to compare performance.

v. Store the evaluation score and discard the obtained model.

b. Calculate the average of the performance comparison metric (in this case,

the average of the accuracies on all the k groups) on the validation set

4. Pick the combination of hyperparameters (in this case, a regularization factor

value) for which the model had the highest average evaluation score (in this case,

the highest average accuracy over each of the k ‘folds’) on the validation.

The we try regularization values between 10-15 and 1010, increasing by an order of

magnitude, i.e. [10-15, 10-14, 10-13, 10-12, 10-11, 10-10, 10-9, 10-8, 10-7, 10-6, 10-5, 10-4, 10-3, 10-2, 10-1,

100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 1010 ]. Using the procedure above, we plot the

average accuracy over the 9 ‘folds’ for each of the regularization values listed above with the

x-axis on a logarithmic scale. The plot is given in Figure 3 below. Thus, the best average

accuracy over the 9 folds is obtained for a regularization factor of 0.1. Thus, this is the value of

the regularization factor used to train the final linear classifier.



Figure 3: Plot of the average accuracy over the 9 folds vs the regularization factor

Step 6: Train the linear classifier using the best regularization value obtained in the

previous step.

The best regularization factor value of 0.1 is used to train a stochastic gradient descent

(SGD) classifier.

Step 7: Evaluate accuracies across skin type on the held out test set.

The details of the method used to evaluate accuracies and the results from this step are

given and discussed in detail in the next Evaluation section.



5. Evaluation

For ease of reading, each of the 9 mid-level skin condition labels are referred to by their

corresponding category code as given in Table 5 below. Note that images whose Fitzpatrick skin

type is labeled ‘unknown’ are denoted by the label -1.

Mid-level skin condition label Category code
benign dermal 0
benign epidermal 1
benign melanocyte 2
genodermatoses 3
inflammatory 4
malignant cutaneous lymphoma 5
malignant dermal 6
malignant epidermal 7
malignant melanoma 8

Table 5: Mid level skin condition categories and their corresponding category code

5.1. Distribution of images by skin type and mid-level skin condition label

Figure 4 below shows the number of images of each Fitzpatrick skin type in the full

dataset, with -1 representing images labeled as having an ‘unknown’ skin type. Moreover, Figure

5 below shows the number of images of each mid-level skin condition category in the full

dataset. Fitzpatrick skin type 2 is the most represented skin type in the dataset, while skin type 6

is the least represented. Moreover, the lightest three skin types make up 67% of the full dataset,

while the darkest three types only make up less than 30% of the full dataset. Thus, a

disproportionate proportion of the dataset, compared to the darkest three skin types.

Moreover, category code 4 (‘inflammatory’ category) makes up almost 66% of the full

dataset, while only 0.94% of the dataset is labeled ‘malignant dermal’ (category code 6). Thus, a

disproportionate number of images are labeled category 4, so the relative number of training

examples for the other categories is relatively much smaller.



Figure 4: number of images by Fitzpatrick skin type label in the full dataset

Figure 5: number of images of each mid level label in the full dataset



5.2. Confusion matrix

The confusion matrix summarizes the number of correct and incorrect predictions by giving the

count values of the predicted labels broken down by each true label. The confusion matrix of the

final trained model using the procedure explained above is given below in Table 6, normalized

such that the sum of the values in each row is 1. The accuracies of each category on the test set

are also given in Figure 7 below, alongside the percentage of images in the full dataset that are

labeled as that category.

Predicted label

True
label

0 1 2 3 4 5 6 7 8

0 11.46% 3.13% 0.00% 0.00% 81.25% 0.00% 0.00% 4.17% 0.00%

1 1.12% 10.11% 0.00% 0.00% 84.27% 0.00% 0.00% 4.49% 0.00%

2 4.55% 0.00% 0.00% 0.00% 90.91% 0.00% 0.00% 0.00% 4.55%

3 0.00% 0.93% 0.00% 16.67% 82.41% 0.00% 0.00% 0.00% 0.00%

4 0.44% 0.26% 0.09% 0.44% 97.89% 0.00% 0.00% 0.61% 0.26%

5 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00%

6 0.00% 0.00% 0.00% 0.00% 94.44% 0.00% 5.56% 0.00% 0.00%

7 0.87% 2.61% 0.00% 0.00% 63.48% 0.00% 0.00% 31.30% 1.74%

8 0.00% 4.65% 0.00% 0.00% 60.47% 0.00% 0.00% 9.30% 25.58%
Table 6: Confusion matrix of the final trained classifier on the test set

Category code Accuracy on test set % of full dataset set
0 11.50% 6.44%
1 10.10% 5.62%
2 4.60% 1.42%
3 16.70% 7.20%
4 97.90% 65.67%
5 0% 1.10%
6 5.60% 0.94%
7 31.30% 8.16%
8 25.60% 3.46%

Table 7: Accuracies on test set and percentage of full dataset labeled as each category code



Discussion

Most images are labeled category 4 (inflammatory), and this category has the highest

accuracy rate amongst all other categories (97.9%). However, most other classes are

misclassified more often than they are correctly classified. Infact, whenever they are

misclassified (>60% of the time for all classes except category 4), they are usually wrongly

classified as category 4. This is expected since most of the images in the dataset (and hence also

in the training set) are of category 4. Thus, whenever the model is unsure, perhaps it learns to

simply output 4 when the model is unsure. Thus, it seems that the overall high accuracy of the

model may be misleading - the model has a significantly lower accuracy on all categories apart

from category 4 (under 30% for all categories).

Moreover, from Table 7, it seems that higher the proportion of a label in the full dataset,

the higher the accuracy for that category on the training set. This suggests that a greater number

of images of a specific category in the dataset correspond to a higher accuracy for that category

on the test set.

5.2. Error bounds on accuracies using the bootstrap method

In order to analyze discrepancies in accuracy across different Fitzpatrick skin types, we

use the bootstrapping method suggested in [11]. This method gives us error bounds over the

accuracies by skin type. The method is summarized as follows [11].

Let there be n images in the test set. n images are sampled with replacement from the test

set, to obtain B bootstrapped samples. Accuracies by skin type are then computed for each of the

B bootstrapped samples, and stored in an array such that there is one array for each skin type

label. Next, each array is sorted, and the ⍺ / 2 and 1 – (⍺ / 2) quantiles for each array are found

and stored, where ⍺ = 0.05, to get the 95% confidence interval, with the ⍺ / 2 quartile value



being the lower bound and 1 – (⍺ / 2) quantile being the upper bound of the confidence interval

[11].

The accuracies are then plotted with error bars corresponding to the 95% confidence

interval found in the previous step. Figure 4 below shows the bar graph with the 95% confidence

interval over the accuracies displayed.

Figure 6: Classification accuracy by skin type, with 95% confidence interval obtained using the
bootstrap method (-1 denotes unknown Fitzpatrick skin type)

Discussion

There is a relatively large uncertainty on the accuracy on the test set across all skin types.

This may be due to the relatively small size of the test set, with under 2000 images, and hence

under 200 images per mid-level category on average. The largest uncertainty in accuracy is for

the darkest skin type, type 6, which is the least represented skin type in the full dataset, while the



smallest uncertainty in accuracy is for the skin type 2, which is the most represented skin type in

the dataset. This suggests that a higher the number of training examples of the skin type in the

full dataset corresponds to a lower the uncertainty on the accuracy for that skin type on the test

set. Thus, this suggests that more images of the skin type in a test set corresponds to a smaller

confidence interval on the accuracy for that skin type on the test set.

In order to see if there exists a statistically significant difference in the accuracies across

skin type, we plot in Figure x below the difference in accuracy of each skin type on the test set

from that of skin type 2 on the test set.

Figure 7: difference in accuracy of each skin type on the test set from that of skin
type 2 on the test set



Discussion

From the figure above, it seems that the value 0 is within the confidence interval for the

difference in accuracy of each skin type from that of skin type 2 on the test set. Thus, there is not

enough evidence at the 95% confidence level to conclude that there is a difference in accuracy of

each skin type from that of skin type 2 on the test set.

However, the error bounds on the accuracy for all skin types, and especially skin type 6,

are very big. Thus, even though the current analysis does not conclusively reveal a bias, it does

not rule out the possibility that a bias does indeed exist.

6. Summary

6.1. Conclusions and Limitations

The Fitzpatrick17k dataset contains a disproportionate number of lighter skinned images

compared to darker skinned images, as well as a vast difference in the number of images per

mid-level skin condition category. Thus, the overall higher accuracy of the final trained model

may thus be misleading due to this class imbalance, since although the model performs relatively

well on the classes represented most in the dataset, it performs poorly on the less represented

classes. Moreover, the analysis of accuracy discrepancies using the bootstrapping method [11]

fails to conclusively determine a discrepancy in accuracy based on skin type in the final model.

However, this negative bias result does not mean that a bias does not exist in the model

since the confidence intervals on the accuracy discrepancies are large. Our analysis also suggests

that a greater number of images of a certain class in the full dataset corresponds to a greater

accuracy in the test set. Moreover, the smaller confidence intervals on the accuracies for each

Fitzpatrick skin type seem to correspond with a greater representation of the skin type in the

dataset. This suggests that greater number of images of each skin type in the dataset would allow



us to obtain more precise values for the accuracies that would allow for a more robust evaluation

of accuracy discrepancies by skin type.

6.2 Future work

Bevan and Atapour-Abarghouei’s paper [26] proposes a method of quantifying and

approximating skin tone using a metric called the individual typology angle (ITA). This could

potentially allow larger skin lesion datasets without skin type labels to be used for analysis of

accuracy disparities across different skin colors by estimating the skin tone using the ITA metric

[26]. However, the ITA metric is very sensitive to lighting conditions, making it an unreliable

metric to estimate skin tone and hence not a reliable proxy for race or ethnicity. Nevertheless,

perhaps using the larger datasets with more examples of images of each skin type and skin

condition would help overcome the problem of lack of images of certain skin types and

conditions in the dataset, which would help us obtain smaller confidence intervals on the

accuracies using the bootstrap method, and hence help conduct a more meaningful analysis of

bias based on skin tone in skin lesion classification models. The paper also introduces and

evaluates two potential debiasing techniques [26], which could be implemented. The debiased

model could then be evaluated using a similar method as used in this report.

Moreover, further analysis could be conducted by changing the distribution of images by

FItzpatrick skin type used in the training set versus the test set to further determine the extent to

which the number of images of a given skin type affects the overall accuracy of the model by

skin type on the test set.

More long term, such a robust evaluation of accuracy disparities in ML models across

subpopulations where classification accuracy is suspected to be heterogeneous could perhaps

pave the way for models that are more generalizable and fair towards those from



underrepresented subgroups. This would allow AI models deployed in the real world to bridge

disparities due to race, ethnicity, gender, etc, rather than further worsen them.
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