Exploring few-shot deception detection via GPT-3’s in-context learning

Tanushree Banerjee
Roadmap for today

Introduce Diplomacy
Past work
Why Diplomacy?
Baselines: Peskov et al. 2020
GPT-3 and in-context learning
Experiments so far
Short, medium and long term vision
Brainstorming session
Diplomacy: The Map That Ruined a Thousand Friendships

Allan Calhamer's brilliant geographic legacy.
The Game That Ruins Friendships and Shapes Careers

For me, Diplomacy is an addictive quarantine hobby. For my high school frenemy, it was training for the Trump administration.
AI is learning to play Diplomacy, and it’s pretty good at it
No Press Diplomacy: Modeling Multi-Agent Gameplay

Philip Paquette ¹
pcpaquette@gmail.com

Yuchen Lu ¹
luyuchen.paul@gmail.com

Steven Bocco ¹
stevenbocco@gmail.com

Max O. Smith ³
max olan smith@gmail.com

Satya Ortiz-Gagné ¹
s ortizgagne@gmail.com

Jonathan K. Kummerfeld ³
jkummerf@umich.edu

Satinder Singh ³
baveja@umich.edu

Joelle Pineau ²
jpineau@cs.mcgill.ca

Aaron Courville ¹
aaron.courville@gmail.com
Learning to Play No-Press Diplomacy with Best Response Policy Iteration

DeepMind
Human-Level Performance in No-Press Diplomacy via Equilibrium Search

Jonathan Gray, Adam Lerer, Anton Bakhtin, Noam Brown
Facebook AI Research
{jsgray, alerer, yolo, noambrown}@fb.com
“No press”: communication disabled
Long-term goal: play Diplomacy “with press”
It Takes Two to Lie: One to Lie, and One to Listen

Denis Peskov, Benny Cheng
Ahmed Elgohary, Joe Barrow
Computer Science, University of Maryland
{dpeskov, bcheng96, elgohary, jdbarrow}@umd.edu

Cristian Danescu-Niculescu-Mizil
Information Science
Cornell University
cristian@cs.cornell.edu

Jordan Boyd-Graber
iSchool, Language Science, UMIACS, LSC
University of Maryland
jbg@umiacs.umd.edu
What is Diplomacy?

7 players
Each player controls multiple units
Each turn move units simultaneously
Conflict winner = superior force
Coordination of moves for success
One of the best board games of all time…

Combination of strategy, tactics, negotiation

The complete absence of any random luck

Today, >10000 people play diplomacy
Rules = Anything goes
A zero-sum game...
Why Diplomacy?

Understand the language of deception
Mix of competition and collaboration to win
Accentuate dilemmas from multi-agent interactions
Large combinatorial action space
The dataset

Double annotations by both sender and receiver

Illuminate difference between a deceptive and truthful statement

~17000 messages

12 games

Each message: one word to multiple paragraphs

Specialised user base

Each game could last for > 1 month

<table>
<thead>
<tr>
<th>Message</th>
<th>Sender’s intention</th>
<th>Receiver’s percep.</th>
</tr>
</thead>
<tbody>
<tr>
<td>If I were lying to you, I’d smile and say “that sounds great.” I’m honest with you because I sincerely thought of us as partners.</td>
<td>Lie</td>
<td>Truth</td>
</tr>
<tr>
<td>You agreed to warn me of unexpected moves, then didn’t … You’ve revealed things to England without my permission, and then made up a story about it after the fact!</td>
<td>Truth</td>
<td>Truth</td>
</tr>
<tr>
<td>…I have a reputation in this hobby for being sincere. Not being duplicitous. It has always served me well. … If you don’t want to work with me, then I can understand that …</td>
<td>Lie</td>
<td>Truth</td>
</tr>
<tr>
<td>(Germany attacks Italy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well this game just got less fun</td>
<td>Truth</td>
<td>Truth</td>
</tr>
<tr>
<td>For you, maybe</td>
<td>Truth</td>
<td>Truth</td>
</tr>
</tbody>
</table>
Dataset fields

- Speakers
- Messages
- Sender labels
- Receiver labels
- Game score
- Absolute message index
- Relative_message index
- Seasons
- Years
- Game id
Study set up

Found players to design study and play as participants

Recruited participants with no experience

Compensation for participating and completing game

Incentive to tell most amount of lies and win game

Good players asked to play again in future games

Custom discord bot to record messages + annotate sent and received messages

Online platform: Backstabber
What is a lie?
“Typically, when [someone] lies [they] say what [they] know to be false in an attempt to deceive the listener”
Dataset statistics
Long messages…

Average message length: 21 words
Unequal class distribution…

95% message truthful

⇒ detecting a lie is a difficult task

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message Count</td>
<td>13,132</td>
</tr>
<tr>
<td>ACTUAL LIE Count</td>
<td>591</td>
</tr>
<tr>
<td>SUSPECTED LIE Count</td>
<td>566</td>
</tr>
<tr>
<td>Average # of Words</td>
<td>20.79</td>
</tr>
</tbody>
</table>
Lies often not caught...
<table>
<thead>
<tr>
<th>Sender's intention</th>
<th>Truth</th>
<th>Receiver's perception</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truth</td>
<td>Straightforward Salut! Just checking in, letting you know the embassy is open, and if you decide to move in a direction I might be able to get involved in, we can probably come to a reasonable arrangement on cooperation. Bonne journee!</td>
<td>Cassandra I don’t care if we target T first or A first. I’ll let you decide. But I want to work as your partner. …I literally will not message anyone else until you and I have a plan. I want it to be clear to you that you’re the ally I want.</td>
</tr>
<tr>
<td>Lie</td>
<td>Deceived You, sir, are a terrific ally. This was more than you needed to do, but makes me feel like this is really a long term thing! Thank you.</td>
<td>Caught So, is it worth us having a discussion this turn? I sincerely wanted to work something out with you last turn, but I took silence to be an ominous sign.</td>
</tr>
<tr>
<td>Sender’s intention</td>
<td>Truth: Straightforward</td>
<td>Receiver’s perception: Cassandra</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td></td>
<td>Salut! Just checking in, letting you know the embassy is open, and if you decide to move in a direction I might be able to get involved in, we can probably come to a reasonable arrangement on cooperation. Bonne journée!</td>
<td>I don’t care if we target T first or A first. I’ll let you decide. But I want to work as your partner. …I literally will not message anyone else until you and I have a plan. I want it to be clear to you that you’re the ally I want</td>
</tr>
<tr>
<td></td>
<td>Deceived: You, sir, are a terrific ally. This was more than you needed to do, but makes me feel like this is really a long term thing! Thank you.</td>
<td>Caught: So, is it worth us having a discussion this turn? I sincerely wanted to work something out with you last turn, but I took silence to be an ominous sign.</td>
</tr>
</tbody>
</table>
Caught So, is it worth us having a discussion this turn? I sincerely wanted to work something out with you last turn, but I took silence to be an ominous sign.
Metric: Macro f1, lying f1
Sanity checks: Random, majority class

Majority class: Shows dataset imbalance
Bag of words logistic regression

Associated with lies:
- words related to sincerity: sincerely, frankly
- words used in apologies, accusations, fallout, alternatives

Associated with truthful statements:
- Casual words: dude
- words associated with reconnaissance: FYI
- words associated with time

Macro F1

- Random: 39.8
- Majority Class: 47.8
- Harbingers: 52.8
- Harbingers+Power: 52.9
- Bag of Words: 54.3
- Bag of Words+Power: 54.9
- LSTM: 53.8
- Context LSTM: 55.8
- Context LSTM+BERT: 52.7
- Context LSTM+Power: 57.2
- Context LSTM+Power+BERT: 56.1
- Human: 58.1
Harbingers logistic regression

Word lists that cover topics often used in interpersonal communication—claims, subjectivity, premises, contingency, comparisons, expansion
Power imbalance

Difference between number of supply centers under the control of the two players

Incorporated as a feature in the logistic regression models

<table>
<thead>
<tr>
<th>Model Description</th>
<th>Macro F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>39.8</td>
</tr>
<tr>
<td>Majority Class - Harbingers</td>
<td>47.8</td>
</tr>
<tr>
<td>Harbingers</td>
<td>52.8</td>
</tr>
<tr>
<td>Harbingers + Power - Bag of Words</td>
<td>52.9</td>
</tr>
<tr>
<td>Bag of Words + Power - LSTM</td>
<td>54.3</td>
</tr>
<tr>
<td>Context LSTM</td>
<td>54.9</td>
</tr>
<tr>
<td>Context LSTM + BERT</td>
<td>53.8</td>
</tr>
<tr>
<td>Context LSTM + Power</td>
<td>55.8</td>
</tr>
<tr>
<td>Context LSTM + Power + BERT</td>
<td>52.7</td>
</tr>
<tr>
<td>Context LSTM + Power + BERT + Human</td>
<td>57.2</td>
</tr>
<tr>
<td>Human</td>
<td>56.1</td>
</tr>
</tbody>
</table>
Neural models

Baseline: LSTM, no context

Extension: Incorporate past context, power (best model)

Fine-tuning BERT embeddings: no improvement

Most gain comes from message itself, not additional information
Summary: Peskov et al. 2020

Train baseline and neural models to detect deception using this data.

Best model approaches human performance.

However, both humans and machines failed to detect most lies.
Takeaways

Detecting a lie is difficult for both humans and machines

- Since lies follow an imbalanced class distribution

Press data can be used for building a bot that has a strategic approach

- Human in the loop set up which does better than humans alone
How well would a large language model be able to detect deception?
Language Models are Few-Shot Learners
How to adapt pretrained LLMs for deception detection?

1. Train from scratch

2. Pre-train + fine-tune

3. In-context learning
Fine-tuning
In-context learning

Zero-shot
The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

```
1 Translate English to French:  task description
2 cheese =>  prompt
```

One-shot
In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```
1 Translate English to French:  task description
2 sea otter => loutre de mer example
3 cheese =>  prompt
```

Few-shot
In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
1 Translate English to French:  task description
2 sea otter => loutre de mer examples
3 peppermint => menthe poivrée
4 plush giraffe => girafe peluche
5 cheese =>  prompt
```
In-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

```plaintext
1  Translate English to French:  ← task description
2  cheese =>                       ← prompt
```

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```plaintext
1  Translate English to French:  ← task description
2  sea otter => loutre de mer   ← example
3  cheese =>                    ← prompt
```

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```plaintext
1  Translate English to French:  ← task description
2  sea otter => loutre de mer   ← examples
3  peppermint => menthe poivrée ←
4  plush giraffe => girafe peluche←
5  cheese =>                     ← prompt
```
Few shot learning improves with scale
Why in-context learning?

Academically interesting

Practically relevant with GPT-3

● Effective with 0-16 examples
● One model for many tasks
Calibrate Before Use: Improving Few-Shot Performance of Language Models

Tony Z. Zhao * 1 Eric Wallace * 1 Shi Feng 2 Dan Klein 1 Sameer Singh 3
Contextual calibration

Step 1: Estimate the bias

Insert "content-free" test input

<table>
<thead>
<tr>
<th>Input</th>
<th>Sentiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subpar acting.</td>
<td>negative</td>
</tr>
<tr>
<td>Beautiful film.</td>
<td>positive</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Get model's prediction

<table>
<thead>
<tr>
<th>Sentiment</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive</td>
<td>0.65</td>
</tr>
<tr>
<td>negative</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Step 2: Counter the bias

"Calibrate" predictions with affine transformation

\[\hat{q} = \text{softmax}(W\hat{p} + b) \]

Calibrated probs

Fit \(W \) and \(b \) to cause uniform prediction for "N/A"

\[
W = \begin{pmatrix}
1 & 0 \\
0.65 & 0 \\
0 & 1 \\
0.35 & 0
\end{pmatrix}
\]

\[
b = \begin{pmatrix}
0 \\
0
\end{pmatrix}
\]
Structure of prompt

Italy: … Germany: … Italy: … We are Germany. Was Italy lying to Germany? Yes

Germany: … Germany: … Italy: … We are Germany. Was Italy lying to Germany? No

Italy: … Germany: … Italy: … We are Germany. Was Italy lying to Germany? Yes

Italy: … Italy: … Italy: … We are Germany. Was Italy lying to Germany? No

Italy: … Germany: … Italy: … We are Germany. Was Italy lying to Germany?
Finding good prompts: method

Context window size = 2

In context examples: 4 x examples from train set

Dev set: random sample of 100 examples from original dev set

- Find best threshold (that gives highest macro F1) for difference in probability of “Yes” token and “No” token on dev set (after contextual calibration)
Finding best prompt: Result on dev set

Best prompt: We are [RECEIVER]. Was [SPEAKER] lying to [RECEIVER]?

Macro F1: 0.603

Lying F1: 0.655

Confusion matrix: {"straightforward": 24, "caught": 37, "deceived": 13, "cassandra": 26}

Notes:

- Replacing specific country names with “us/them” does not cause much improvement
- Variation in F1 scores across prompts reduces after calibration (generally in 0.5-0.6 range)
- Small changes in prompt (“I think… I believe…”) cause a lot of variation in performance
Finding best prompt: evaluation on full test set

Macro F1: 0.500

Lying F1: 0.274

Best threshold: 0.487

Ensemble approach: part 1

1. Attributes that constitute a lie (based on literature referenced by Peskov et al. 2020): authority, scarcity, likability, reciprocity
2. Tested 2-3 prompts for each of the above attributes
 a. Ground truth label: sender labels (for lies) and prediction indicates if the model thinks that attribute is displayed in the message.
 b. Thus perhaps a measure of how well the attributes correlated/correspond to messages that are lies?
3. Chose prompt that gave best macro F1
4. Prompts for each attribute are tested on the same sample of 100 examples from the dev set
Ensemble approach part 1 results

Best F1s (macro, lying) for each attribute:

1. Authority: 0.521, 0.617
2. Scarcity: 0.499, 0.479
3. Likability: 0.495, 0.545
4. Reciprocity: 0.510, 0.524
Ensemble approach part 1 results

Best prompt for each attribute:

1. Authority: We are RECEIVER. Is SPEAKER using authority to persuade RECEIVER?
2. Scarcity: We are RECEIVER. Is SPEAKER using scarcity to persuade RECEIVER?
3. Likability: We are RECEIVER. Is SPEAKER displaying likability?
4. Reciprocity: We are RECEIVER. Is SPEAKER reciprocating RECEIVER?
Ensemble approach part 2: method

1. Choose the best prompts for each attribute
2. Get predictions for each attribute
3. Take the difference in the log probs of the yes and no token after calibration as an entry in a feature vector representing each message
 a. each entry represents each attribute, so feature vector is of length 4 since we are considering 4 attributes: authority, likability, scarcity, reciprocity
4. Train an MLP (2 hidden layers) with input as 100 examples from dev set, and ground truth labels are the sender labels for those examples
5. Evaluate the trained MLP on the full test set
 a. after getting the feature vectors using the same method as step 3 for each example in the test set, which are used as the input to the MLP
 b. Note: no thresholding etc. is done
Ensemble approach part 2: results on full test set

Macro F1: 0.430

Lying F1: 0.270
Train separate models for each player + comparison with BERT+ context LSTM model from Peskov et al. 2020

Method (GPT-3)

- In context examples contain 4 examples with latest message in each example sent by the winner of the game
- Dev set: only examples where latest message is sent by winner of the game
- Test set: only examples where latest message is sent by winner of the game

Method (BERT+context LSTM)

- Train on full test set, dev set is the same as the original dev set
- Test set: only examples where latest message is sent by winner of the game
BERT + context LSTM

```json
1 {'lying_f1': 0.23529411764705882, 'macro_f1': 0.5286059629331185}
2 {'lying_f1': 0.0, 'macro_f1': 0.45454545454545453}
3 {'lying_f1': 0.0, 'macro_f1': 0.4576271186440678}
4 {'lying_f1': 0.0, 'macro_f1': 0.4476190476190476}
5 {'lying_f1': 0.0, 'macro_f1': 0.4285714285714286}
6 {'lying_f1': 'n/a', 'macro_f1': 1.0}
7 {'lying_f1': 0.0, 'macro_f1': 0.49056603773584906}
8 {'lying_f1': 0.0, 'macro_f1': 0.44537815126050423}
9 {'lying_f1': 0.0, 'macro_f1': 0.45161290322580644}
10 {'lying_f1': 0.0, 'macro_f1': 0.45378151260504196}
11 {'lying_f1': 0.0, 'macro_f1': 0.49965635738831615}
12 {'lying_f1': 0.13333333333333333, 'macro_f1': 0.42748091603053434}
```
f1_macro: 0.4580619017676239 ; f1_lying: 0.2125340599455041
f1_macro: 0.4641010913268236 ; f1_lying: 0.0
f1_macro: 0.4722662440570523 ; f1_lying: 0.0
f1_macro: 0.424390243902439 ; f1_lying: 0.0
f1_macro: 0.488031914893617 ; f1_lying: 0.125
f1_macro: 0.4813863928112965 ; f1_lying: 0.15789473684210528
f1_macro: 0.5229000691185565 ; f1_lying: 0.12244897959183673
f1_macro: 0.47006369426751593 ; f1_lying: 0.0
f1_macro: 0.46282973621103124 ; f1_lying: 0.0
f1_macro: 0.5408208955223881 ; f1_lying: 0.16
f1_macro: 0.5055700862152475 ; f1_lying: 0.2724014336917563
f1_macro: 0.5203208556149733 ; f1_lying: 0.18181818181818182
Chain of Thought Prompting Elicits Reasoning in Large Language Models

Jason Wei Xuezhi Wang Dale Schuurmans Maarten Bosma
Brian Ichter Fei Xia Ed H. Chi Quoc V. Le Denny Zhou

Google Research, Brain Team
{Jasonwei,dennyzhou}@google.com
Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?
A: The answer is 27. ❌

Chain of Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. $5 + 6 = 11$. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?
A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9. ✔️
Large Language Models are Zero-Shot Reasoners

Takeshi Kojima
The University of Tokyo
t.kojima@weblab.t.u-tokyo.ac.jp

Shixiang Shane Gu
Google Research, Brain Team

Machel Reid
Google Research*

Yutaka Matsuo
The University of Tokyo

Yusuke Iwasawa
The University of Tokyo
(a) Few-shot

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
A: The answer is 8. ✗

(Output) The answer is 8. ✗

(b) Few-shot-CoT

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. \(5 + 6 = 11\). The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
A: The juggler can juggle 16 balls. Half of the balls are golf balls. So there are \(16 / 2 = 8\) golf balls. Half of the golf balls are blue. So there are \(8 / 2 = 4\) blue golf balls. The answer is 4. ✓

(c) Zero-shot

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
A: The answer (arabic numerals) is

(Output) 8 ✗

(d) Zero-shot-CoT (Ours)

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?
A: Let's think step by step.

(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls. ✓
Q: On average Joe throws 25 punches per minute. A fight lasts 5 rounds of 3 minutes. How many punches did he throw?
A: Let's think step by step.

In one minute, Joe throws 25 punches.
In three minutes, Joe throws $3 \times 25 = 75$ punches.
In five rounds, Joe throws $5 \times 75 = 375$ punches.

Therefore, the answer (arabic numerals) is 375.
2 stage prompting for consistency check

1st prompt:

(Italy: ... Germany: ... Italy: ...) x4
Italy: ... Austria: ... Italy: ...

We are Austria. Is Italy making consistent statements?

LLM

No

2nd prompt:

(Italy: ... Germany: ... Italy: ...) x4
Italy: ... Austria: ... Italy: ...

We are Austria. Is Italy making consistent statements? No

Is Italy lying to Austria?

LLM

Yes
Other ideas

Incorporate power: “The game score delta between [SPEAKER] and [RECEIVER] is [x].”

Generate annotations for likeability, assertiveness etc.

Try to predict opponents actions k steps into the future (say k = 5)
Large Language Models for Few Shot DAIDE Translations (Sander Schulhoff, Sept 2022)

DAIDE: language with three letter acronyms for Diplomacy moves (e.g. HLD: hold)

Experiment with GPT-3’s ability to translate between DAIDE and English

Result: impressive 0 shot and few shot performance

Applications suggested:

1. English message annotation: evaluate stances of players, classify positive or
 negative relations between players
2. Generate different tones of speech in English from DAIDE
3. Incorporate with GameScrapes data somehow?
Here are some words from a language called DAIDE, as well as their English translations:

HLD: hold
MTO: move to
SUP: support to hold

Units are defined as (country unit_type province)
A support to move order looks like: (unit) SUP (unit) MTO province

Here are some translation examples from English to DAIDE:

[Russia to England] Can your army in Warsaw support my army in Ukraine?: PRP ((ENG AMY WAR) SUP (RUS AMY UKR))
[Germany to Austria] Can your fleet on the Baltic Sea support my army in Sweden?: PRP ((AUS FLT BAL) SUP (GER AMY SWE))
[France to Italy] Can your fleet in the Adriatic Sea convoy my army in Apulia to Trieste?: PRP ((ITA FLT ADR) CVY (FRA AMY APU) CTO TRI)

Now translate the following from DAIDE to English:
Short term vision

Develop the best pipeline for leveraging GPT-3’s in-context learning ability to detect deception
Medium term vision

Gain confidence that GPT-3 is able to detect linguistic signals for deception.

After gaining confidence, gain motivation to investigate the use of GPT-3’s in context learning ability in generating annotations for stance, etc.
Long term vision

Evaluate the extent/ability of large language models to detect nuanced aspects of language such as deception which consists of more complicated long-range dependencies
Any ideas/suggestions?
Thank you!
References

Language Models are Few-Shot Learners
Calibrate Before Use: Improving Few-Shot Performance of Language Models
Chain of Thought Prompting Elicits Reasoning in Large Language Models
Large Language Models are Zero-Shot Reasoners
It Takes Two to Lie: One to Lie, and One to Listen
Learning to Play No-Press Diplomacy with Best Response Policy Iteration
No Press Diplomacy: Modeling Multi-Agent Gameplay
HUMAN-LEVEL PERFORMANCE IN NO-PRESS DIPLOMACY VIA EQUILIBRIUM SEARCH
Large Language Models for Few Shot DAIDE Translations (Sander Schulhoff, Sept 2022)
References

Diplomacy - Games4Sustainability

Diplomacy: The Map That Ruined a Thousand Friendships - Bloomberg

Diplomacy Is A Game That Makes Careers And Ruins Friendships

AI is learning to play Diplomacy, and it’s pretty good at it | Enterprise

The Simpsons - It Takes Two To Lie

Backstabbr

It Takes Two to Lie: One to Lie and One to Listen