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Reproducibility Summary

Scope of Reproducibility — Park, Rybkin, and Levine [1] claim that their novel unsupervised
RL objective, calledMetric‐Aware Abstraction (METRA) [1], learns diverse, useful behav‐
iors, as well as a compact latent space that can be used to solve various downstream
tasks in a zero‐shot manner, outperforming previous unsupervised RL methods. Park,
Rybkin, and Levine [1] claim that METRA [1] is the first unsupervised RL method that
demonstrates the discovery of diverse locomotion behaviors in pixel‐based Quadruped
and Humanoid environments. They also claim that previous pure exploitation based
approaches fail to cover the state space of the state‐based 29‐dimensional Ant environ‐
ment.

Methodology —We used the original code of Park, Rybkin, and Levine [1] provided in this
GitHub repository and re‐implemented the key lines of code for implementing their pro‐
posedmethod, METRA [1]. We reproduce the results for the experiments supporting the
main claims made in Park, Rybkin, and Levine [1]. We utilized roughly 300 GPU hours
to conduct this reproduction study. The code for our reproduction study is available in
this GitHub repository.

Results — Compared to the 3 baselines (vs Park, Rybkin, and Levine [1]’s 11), our results
reflect that of Park, Rybkin, and Levine [1]: METRA uniquely demonstrates the ability
to learn diverse skills in Quadruped and Humanoid environments.

What was easy — It was easy to run Park, Rybkin, and Levine [1]’s code. Moreover, it was
easy to re‐implement key lines of code for their method based on the description in the
paper.

What was difficult — The difficulties primarily lie on the implementation side. We have to
run a lot of experiments across various environments, for different methods, and with
multiple random seeds, which presents significant challenges due to time and compu‐
tational constraints.

Communication with original authors —We have sent the original authors of the paper this
reproducibility report for their feedback.

Copyright © 2024 T. Banerjee, T. Zhong, and T. Benson, released under the MIT License.
The authors have declared that no competing interests exist.
Code is available at https://github.com/tanushreebanerjee/re_METRA_cos435.
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[Re] METRA: Scalable Unsupervised RL with Metric-Aware Abstraction

1 Introduction

In this section, we summarize the problem addressed in Park, Rybkin, and Levine [1],
along with challenges prior work has failed to address. Next, we summarize themethod
proposed by Park, Rybkin, and Levine [1] to address these challenges, as well as a sum‐
mary of the results from our reproduction study. Lastly, we summarize key limitations
of the approach proposed by Park, Rybkin, and Levine [1].

Problem and motivation — Although unsupervised pre‐training has proven transformative
in the natural language processing and computer vision domains [2, 3], an equally scal‐
able framework for unsupervised reinforcement learning (RL) that autonomously ex‐
plores the space of possible behaviors has not yet been found. Finding such a scalable
framework for unsupervisedRL could enable general‐purpose unsupervised pre‐trained
agents to serve as an effective foundation for efficiently learning a broad range of down‐
stream tasks.

Prior work and challenges — Although the unsupervised RL formulation has been explored
in a number of prior works and shown to be effective in several unsupervised RL bench‐
marks [4, 5], it is not entirely clear whether such methods can indeed be scalable to
complex environments with high intrinsic dimensionality. Thus, truly scalable unsu‐
pervised RL is still a major open challenge. Previous proposed approaches to solving
the unsupervised RL formulation can be categorized into two main groups: (i) pure ex‐
ploration methods [6, 4, 7, 8, 9], which aim to either completely cover the entire state
space or fully capture the environment and transition dynamics of the Markov Decision
Process (MDP), and (ii) unsupervised skill discovery methods [10, 5, 11, 12, 13], which
aim to discover diverse, distinguishable behaviors, e.g., bymaximizing themutual infor‐
mation (MI) between states and skills. However, these approaches to fully unsupervised
RL are still not truly scalable due to the following reasons.

1. Covering the entire state space or fully capturing the environment dynamics in
pure exploration methods is typically infeasible in complex environments with a
large state space. Park, Rybkin, and Levine [1] show that these methods fail to
cover the state space even in the state‐based 29‐dimensional MuJoCo Ant environ‐
ment.

2. Although unsupervised skill discovery methods are able to learn mutually differ‐
ent behaviours, they do not necessarily encourage exploration and thus have lim‐
ited state coverage in the complete absence of supervision, or are not directly scal‐
able to pixel‐based control environments [10, 14].

Metric�Aware Abstraction (METRA) —METRA [1] is an unsupervised RL objective that scales
to complex, image‐based environments with high intrinsic dimensionality. This objec‐
tive encourages an agent to explore its environment and learn a breadth of potentially
useful behaviors without any supervision. The proposed approach by Park, Rybkin, and
Levine [1] consists of two key components.

1. Learning over a compact latent metric space instead of the original state space.
METRA learns diverse behaviors that maximally cover a compact latent metric
space defined by a mapping function ϕ : S → Z with a metric d instead of the
original state space. Here, the latent state is connected by the state space by the
metric d, which ensures that covering latent space leads to coverage of the state
space.

2. Using the temporal distance as a metric. Previous metric‐based skill learning
methods mostly used the Euclidean distance (or its scaled variant) between two
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[Re] METRA: Scalable Unsupervised RL with Metric-Aware Abstraction

states [15, 10, 14]. However, such state‐based metrics are not directly applicable
to complex, high‐dimensional state space (e.g., images). Thus, Park, Rybkin, and
Levine [1] propose to use temporal distances (i.e., the number of minimum en‐
vironment steps between two states) as a metric for the latent space. Temporal
distances are invariant to state representations and thus applicable to pixel‐based
environments as well. By maximizing coverage in the compact latent space, the
proposed approach can acquire diverse behaviors that approximately cover the
entire state space, being scalable to high‐dimensional, complex environments.

Results reported by the original paper — Park, Rybkin, and Levine [1] conduct experiments
on five state‐based and pixel‐based continuous control environments to validate that
their method learns diverse, useful behaviors, as well as a compact latent space that
can be used to solve various downstream tasks in a zero‐shot manner, outperforming
previous unsupervised RL methods. Moreover, they claim that their approach is the
first unsupervised RL method that demonstrates the discovery of diverse locomotion
behaviors in pixel‐based Quadruped and Humanoid environments.

Limitations of the approach proposed in the original paper — The proposed approachhas a small
update‐to‐data ratio like other similar unsupervised skill discoverymethods. Themethod
also has poor sample efficiency. In addition, Park, Rybkin, and Levine [1] only conduct
evaluation on locomotion and manipulation environments and do not validate their
method on other types of environments.

2 Related Work

Unsupervised reinforcement learning (RL) is fundamentally about acquiring actionable
knowledge such as policies and world models through interaction with an environment
without predefined tasks or rewards, aiming to enhance downstream task efficiency.
Historically, we have two principal methodologies: pure exploration and unsupervised
skill discovery. Both of these are are discussed in further detail below.

2.1 Pure exploration strategies
Pure exploration strategies, which include maximizing uncertainty or state entropy,
strive to cover the entire state space or capture the complete dynamics of the environ‐
ment [8, 9, 16, 17, 18, 19, 7, 20, 21, 22]. These methods develop world models and train
goal‐conditioned policies by utilizing the data generated from exploration strategies [6,
4, 21, 23, 24, 25]. However, they often face scalability challenges in complex environ‐
ments due to computational limits, as demonstrated by Park et al. [1] in their empirical
analysis of the 29‐dimensional state‐based Ant environment.

2.2 Unsupervised skill discovery
Unsupervised skill discovery focuses on identifying diverse, distinct behaviors by max‐
imizing the mutual information between states and latent skills [11, 12, 13, 26]. This
approach, however, tends to discover simplistic behaviors with limited state coverage
due to themetric‐agnostic nature of KL divergence used in definingmutual information
[10, 27]. To overcome these limitations, recent advancements propose combining mu‐
tual information objectives with exploration bonuses or designing new objectives that
emphasize maximizing distances within the state space [27, 28, 29, 10, 14, 15]. Park et
al. [1] further this field by successfully employing temporal distance metrics to learn
a compact set of diverse behaviors, thereby addressing the challenge of scalability in
high‐dimensional environments and demonstrating effective state space coverage in
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pixel‐based locomotion settings. Their approach expands upon traditional methods in
unsupervised RL.

3 Scope of reproducibility

In this section, we clarify the scope of reproducibility of our paper. We summarize the
problem setting used in Park, Rybkin, and Levine [1], as well as the main claims made
in the original paper.

Problem setting — Park et al. [1] study a controlled Markov process, defined as M =
(S,A, µ, p), where S and A represent the state and action spaces, µ : ∆(S) the initial
state distribution, and p : S × A → ∆(A) the transition dynamics kernel. They ex‐
plore unsupervised skill discovery using latent vectors z ∈ Z, which can be discrete
or continuous, within a latent‐conditioned policy π(a|s, z). These vectors, referred to
as skills, and their corresponding policies are utilized to sample trajectories by fixing z

throughout the episode: p(τ, z) = p(z)p(s0)
∏T−1

t=0 π(at|st, z)p(st+1|st, at).
Their objective is to learn diverse, useful behaviors π(a|s, z) without reliance on any
prior data or supervision. In experiments, particularly in pixel‐based DMC locomotion
environments, Park, Rybkin, and Levine [1] enhance the agent’s spatial awareness by
using colored floors, similarly to [30, 31]. They ensure the agent’s behaviors are learned
solely from 64 × 64 × 3 camera images, without any supplemental prior knowledge or
data.

Main claims — Park, Rybkin, and Levine [1] make the following claims in their work.

• Claim 1. The proposed novel unsupervised RL objective, Metric‐Aware Abstrac‐
tion (METRA) [1], learns diverse, useful behaviors, as well as a compact latent
space that can be used to solve various downstream tasks in a zero‐shot manner,
outperforming previous unsupervised RL methods.

• Claim 2. METRA [1] is the first unsupervised RLmethod that demonstrates the dis‐
covery of diverse locomotion behaviors in pixel‐based Quadruped and Humanoid
environments.

4 Methodology

In this section, we summarize our approach to reproducing Park, Rybkin, and Levine
[1], giving details of the baselines we use to evaluate the performance of the method
proposed by Park, Rybkin, and Levine [1], as well as the benchmark datasets used to
evaluate performance. In addition, we provide details on how hyperparameter values
were chosen, as well as the experimental setup, computational requirements, and a link
to the code we used in our reproduction study.

4.1 Overview of method proposed by Park, Rybkin, and Levine [1]
Objective —METRA proposes a novel objective for unsupervised RL called the Wasser‐
stein Dependency Measure (WDM):

IW (S;Z) = W (p(s, z), p(s)p(z))

This measure uses the 1‐Wasserstein distance. Which, importantly, is a metric-aware
quantity, and will identify diverse skills in addition to ensuring that these skills cover
significant portions of the state space.
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[Re] METRA: Scalable Unsupervised RL with Metric-Aware Abstraction

Temporal DistanceMetric —METRAuses temporal distances instead of traditional Euclidean
distances – making it invariant to the representation of the state (e.g., pixel‐based). This
abstraction of the state space focuses on learning a compact representation that cap‐
tures the most temporally significant transitions in the environment.

Tractable Optimization —WDM is not straightforward to maximize in practice. METRA
uses the Kantorovich‐Rubenstein duality. Which, by learning a policy and a 1‐Lipschitz
score function concurrently, provides a tractable way to maximize the WDM.

Implementation — The implementation involves sampling skills and trajectories, updating
a representation function that maximizes the WDM, and adjusting the policy using a
reinforcement learning algorithm like Soft Actor‐Critic.

4.2 Approach to reproducing Park, Rybkin, and Levine [1]
Weused the authors’ code base, but re‐implemented the key lines of code for implement‐
ing their proposed method, METRA [1] from the description provided in the paper. The
code for our reproduction study is available in this GitHub repository. We summarize
the resources we used for this reproduction study below.

1. Code. We used code to set up the experiments and all code other than for imple‐
menting the proposed method from the official code associated with the paper by
Park, Rybkin, and Levine [1] available in this GitHub repository. Specifically, we
rewrote the code files in the ./iod folder in this code repository to reproduce the
proposed method. We reused the other code files in the repository for setting up
the environment and evaluating baseline methods.

2. Documentation. We reimplemented the proposed method from the description
provided in the main paper and supplementary material. Specifically, we referred
to Section 4 (method section) and 5 (experiments section) in the main paper and
Section F (Experimental details) in the appendix of the original paper by Park, Ry‐
bkin, and Levine [1] to re‐implement the core proposed method from scratch.

3. GPUs. We used 4 NVIDIA A100 80GB GPUs for the reproduction study for 72 hours.
Specifically, each run on the state‐based environments usually takes around 24
hours, and each run on the pixel‐based environments usually takes around 48‐72
hours.

4.3 Baselines
Park et al. [1] evaluate METRA against eleven previously established methods that we
group into three categories below. To assess the utility of the learned skills for down‐
stream tasks, they train a hierarchical high‐level controller above the static skill policy
to optimize task rewards [1].

Unsupervised skill discovery — These include (i) two MI‐based approaches, DIAYN [12] and
DADS [11], (ii) a hybridmethod that combinesMI and an exploration bonus, CIC [5], and
(iii) one metric‐based approach that maximizes Euclidean distances, LSD [10].

Unsupervised exploration — These include (i) five pure exploration approaches, ICM [16],
RND [9], Plan2Explore (or Disagreement) [18, 8], APT [7], and LBS [19], and (ii) one hybrid
approach that combines exploration and successor features, APS [32].
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[Re] METRA: Scalable Unsupervised RL with Metric-Aware Abstraction

Unsupervised goal-reaching methods — These include state‐of‐the‐art unsupervised RL ap‐
proach, LEXA [4], and two previous skill discovery methods that enable zero‐shot goal‐
reaching, DIAYN [12] and LSD [10].

Reproducing baselinemethods — In our reproduction, wemainly comparedMETRA [1] against
LSD [10], DADS [11], and DIAYN [12] which could be easily adapted from the METRA [1]
code repository (see Appendix D in the original paper by Park, Rybkin, and Levine [1]).
We believe reimplementing other baseline methods reported in the paper would be out
of the scope of this project.

4.4 Datasets
Park, Rybkin, and Levine [1] evaluate their method on five robotic locomotion and ma‐
nipulation environments.

1. State‐based Ant from Gym [33, 34]. Ant has a 29‐dimensional state space. The
episode length is 200

2. State‐based HalfCheetah from Gym [33, 34]. HalfCheetah has an 18‐dimensional
state space. The episode length is 200

3. Pixel‐based Quadruped from the DeepMind Control (DMC) Suite [35]. In DMC lo‐
comotion environments, Park, Rybkin, and Levine [1] use gradient‐colored floors
to allow the agent to infer its location from pixels, similar to Hafner et al. [30] and
Park et al. [31]. Pixel‐based environments have an observation space of 64×64×3,
and Park, Rybkin, and Levine [1] do not use any proprioceptive state information.
The episode length is 400. Park, Rybkin, and Levine [1] use an action repeat of 2
following Mendonca et al. [4].

4. Pixel‐based Humanoid from the DeepMind Control (DMC) Suite [35]. In DMC lo‐
comotion environments, Park, Rybkin, and Levine [1] use gradient‐colored floors
to allow the agent to infer its location from pixels, similar to Hafner et al. [30] and
Park et al. [31]. Pixel‐based environments have an observation space of 64×64×3,
and Park, Rybkin, and Levine [1] do not use any proprioceptive state information.
The episode length is 400. Park, Rybkin, and Levine [1] use an action repeat of 2
following Mendonca et al. [4].

5. Pixel‐based version of Kitchen from [4, 36]. Park, Rybkin, and Levine [1] use the
same camera setting as LEXA [4]. Pixel‐based environments have an observation
space of 64×64×3, and Park, Rybkin, and Levine [1] do not use any proprioceptive
state information. The episode length is 50.

4.5 Hyperparameters
Given the constraints on time and computational resources, we adopted the original set
of hyperparameters from the paper by Park, Rybkin, and Levine [1]. Table 1 details the
hyperparameter choices.

4.6 Experimental setup and code

Experimental setup — Park, Rybkin, and Levine [1] followed Sharma et al. [11] and Park et
al. [10, 14] to use the MuJoCo HalfCheetah and Ant environments [33, 34]. Park, Rybkin,
and Levine [1] adopt the pixel‐based Quadruped and Humanoid from the DeepMind
Control Suite [35] and a pixel‐based Kitchen by Gupta et al. [36] and Mendonca et al. [4]
for the pixel‐based environments.
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Hyperparameter Value

Learning rate 1e‐4
Optimizer Adam [37]
# episodes per epoch 8

# gradient steps per epoch 200(Quadruped, Humanoid),
100 (Kitchen), 50 (Ane, HalfCheetah)

Batch size 256
Discount factor γ 0.99

Replay buffer size 106(Ant, HalfCheetah), 105 (Kitchen),
3× 105 (Quadruped, Humanoid)

Encoder Architecture 4 layers CNN [38]
# hidden layers 2
# hidden units per layer 1024
Target network smoothing coefficient 0.995

Entropy coefficient 0.01 (Kitchen)
auto [39] (others)

METRA ϵ 10−3

METRA initial λ 30

Table 1. Hyperparameters settings

Evaluation metric — In the study by Park et al.[1], the state coverage metric in locomotion
environments counts the number of 1× 1‐sized x‐y bins that are occupied by any of the
target trajectories for Ant, Quadruped, and Humanoid environments, or 1‐sized x bins
for HalfCheetah. In the Kitchen environment, they count the number of pre‐defined
tasks achieved by any of the target trajectories, using the same six pre‐defined tasks as
used by Mendonca et al. [4]: Kettle (K), Microwave (M), Light Switch (LS), Hinge Cabi‐
net (HC), Slide Cabinet (SC), and Bottom Burner (BB). Three types of coverage metrics
are used: policy state coverage, queue state coverage, and total state coverage, each
employing different target trajectories.

• Policy state coverage, primarily for skill discovery methods, is computed using 48
deterministic trajectories with 48 randomly sampled skills at the current epoch.

• Queue state coverage is determined by the most recent 100,000 training trajecto‐
ries up to the current epoch.

• Total state coverage is computed using all training trajectories up to the current
epoch.

Link to our code — The link to our code for this reproduction study is available here: https:
//github.com/tanushreebanerjee/re_METRA_cos435.

4.7 Computational requirements
Our experiments were conducted on the Adroit cluster, equipped with NVIDIA A100
80GB GPUs. 4 A100 80GB GPUs are sufficient to run all the experiments reported in our
reproduction work simultaneously for 3 random seeds. For state‐based environments,
the training duration typically ranged between 12 to 24 hours, a timeframe sufficient
to achieve convergence for most models in these settings. In contrast, pixel‐based envi‐
ronments require considerablymore computational resources and time. Themaximum
permissible runtime on the Adroit cluster is 72 hours, which often limits our training
sessions. Specifically, for the pixel‐based Quadruped and Humanoid environments, we
managed to complete only about half of the total number of epochs documented in the
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[Re] METRA: Scalable Unsupervised RL with Metric-Aware Abstraction

original paper by Park, Rybkin, and Levine [1] within this time limit. The Kitchen envi‐
ronment, also pixel‐based, requires between 48 to 72 hours to train.

5 Results

Our results support the main claims of the original paper. Our reproduction results
align closely with the original results presented by Park, Rybkin, and Levine [1], which
supports Park, Rybkin, and Levine [1]’s conclusion that it outperforms the baselines.
The results are aggregated across 3 seed and reported 95% confidence intervals.

5.1 Results reproducing original paper
In this subsection, we provide results that attempt to reproduce the results of experi‐
ments in the original paper by Park, Rybkin, and Levine [1] supporting the main claims
made by Park, Rybkin, and Levine [1].

Qualitative Results — In the original paper, Park, Rybkin, and Levine [1] presents a com‐
parative analysis of METRA against 10 previous unsupervised RL methods across five
benchmark environments. Among them, METRA [1] is the only method that can dis‐
cover diver locomotion skills in pixel‐based Quadruped and Humanoid environments
while other methods either exhibit chaotic behaviors or fail to explore the state space
effectively.
In our reproduction study, we successfully validate the experimental results originally
presented against 3 baseline methods, as shown in Figure 1. Our findings confirm that
METRA [1] effectively discovers a wide range of behaviors in both state‐based and pixel‐
based environments. Other unsupervised RL methods show limited capability in fully
exploring the state space, especially in pixel‐based environments, which is consistent
with the original findings. These results showcase the robustness and scalability of ME‐
TRA [1], which reaffirms claim 2 outlined in Section 3.

Quantitative Results — In the original paper by Park, Rybkin, and Levine [1], METRA was
comparedwith other unsupervised skill discoverymethods, namely LSD [10], DADS [11],
and DIAYN [12]. The performance is reported using the state or task coverage metric as
described in Section 4.6. According to Park, Rybkin, andLevine [1],METRA [1] excels the
other methods in most benchmark environments, particularly in pixel‐based domains
such as the Quadruped and Humanoid, where METRA [1] uniquely demonstrate the
ability to learn diverse skills.
In our reproduction efforts, we have successfully replicated these findings. Our empiri‐
cal results in Figure 2 and 3 confirm that METRA [1] consistently achieves superior state
or task coverage, especially in complex pixel‐based environments where other methods
struggle to develop significant skills. For example, LSD [10], a metric‐based skill discov‐
erymethod aiming tomaximize Euclidean distances, successfully identifies locomotion
skills in state‐based environments. However, it struggles to adapt to pixel‐based envi‐
ronments where Euclidean distance measurements on image pixels are not effectively
meaningful. These results validate the original claims about METRA’s [1] effectiveness
in unsupervised skill discovery across various domains, supporting claim 1 outlined in
Section 3.

5.2 Results beyond original paper
In this subsection, we provide results not provided in the original paper by Park, Rybkin,
and Levine [1] to further validate the claims made in the original paper by Park, Rybkin,
and Levine [1].
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Figure 1. Behavioral outcomes from 4 unsupervised reinforcement learning techniques. In
locomotion‐based environments, the trajectories (either x− y or just x) derived from the learned
policies are depicted. In the case of the Kitchen environment, the success rates of six specific
tasks are evaluated. Various skills are denoted using distinct color codes for each skill z. Notably,
METRA stands out as the singular approach that uncovers a variety of locomotion skills in the
pixel‐based environments of Quadruped and Humanoid.

x−y Trajectory in the Kitchen Environment — In the original paper, Park, Rybkin, and Levine
[1] show the behaviors learned with METRA [1] using the coincidental success rates for
six predefined tasks. Due to constraints in computational resources, we are not able to
run the same number of times as in the original paper, making the results shown in
Figure 1 less informative. To compensate for that, Figure 4 plots the x − y trajectories
sampled from learned policies. This also underscores that METRA [1] could discover
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Figure 2. Quantitative analysis of unsupervised skill discoverymethods using 3 random seeds. This
study measures the state/task coverage of policies derived from five skill discovery techniques.
METRA demonstrates superior coverage across all tested environments and uniquely succeeds
in mapping the state spaces of pixel‐based locomotion environments. Importantly, it is the only
method that identifies diverse locomotion skills in the pixel‐based Quadruped and Humanoid
environments.
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Figure 3. Quantitative analysis of unsupervised skill discovery methods using three random seeds,
measured against wall clock time. METRA also achieved superior performance in this regard.
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Figure 4. Additional Figure of x − y trajectory in the kitchen environment. METRA also demon‐
strate diverse manipulation trajectories. Each color represents a unique roll out.

diverse manipulation skills in pixel‐based environments, strengthening claims 1 and 2
in Section 3.

Plot of ϕ(s) — In Figure 5, we include another additional figure that provides a visualiza‐
tion of learned skill representation ϕ(s) in the latent space Z by METRA [1]. This figure
effectively illustrates that METRA [1] is capable of differentiating various skills within
the compact latent space. Here, each skill is represented by a 2DGaussian centered at its
mean with variability illustrated by its spread. This highlights the distinctiveness of the
learned skills, demonstrating METRA’s ability to map high‐dimensional state input to
distinguishable skills in the latent space. These findings also support claim 1 in Section
3.

6 Discussion

Our results support all the claims of the original paper. We discuss the strengths and
weaknesses of our reproduction approach below. Next, we discuss what was easy and
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Figure 5. Additional Figure of Visualization of skill representations in the latent spaceZ as learned
byMETRA, showcasing the effective abstraction and clear differentiation of skills. Each Gaussian
represents a unique skill, centered at its mean with variability illustrated by its spread, highlight‐
ing METRA’s capability to map distinct and distinguishable skills from complex state inputs.

difficult to reproduce. Finally, we discuss differences in experimental configuration be‐
tween our reproduction study and the original paper by Park, Rybkin, and Levine [1], the
limitations of the proposed method by metra\ , communication with original authors,
and further experiments that could be done to verify the claims of the original paper as
part of a reproduction study.

1. Strengths. We conducted extensive experiments to the best of our abilities. Our
findings validate most of the claims made in the original paper. We also include
additional studies as in Figure 4 and 5. The results of this additional experiment
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further strengthen the claims in Section 3.

2. Weaknesses. We did not have the time and computational resources to run all the
experiments in the supplementary material of the paper. To rigorously reproduce
all the results presented in the original paper, wewill have to reimplement and run
all the baselines reported where we currently only report 3 of them. Moreover, the
results reported by Park, Rybkin, and Levine [1] are aggregated across 8 random
seeds. Due to limited computational resources, we only report our reproduction
results across 3 random seeds. Therefore, our experimental configuration of a
maximumof 72 hours per experimentmay influence the differences in reproduced
values.

6.1 What was easy
Parsing the original paper published by Park, Rybkin, and Levine [1] provedmanageable.
Specifically made easier by the shortened summary hosted as a webpage at this link.

6.2 What was difficult
The difficulties encountered during this study primarily lie on the implementation side.
As detailed in Section 5, conducting a wide array of experiments across various envi‐
ronments, for different methods, and with multiple random seeds presents significant
challenges. It requires a delicate balance between striving for accuracy and limiting
our use of computational resources, which are also in demand by our classmates. More‐
over, setting up the experimental environment, especially the pixel‐based simulation,
is somewhat troublesome due to the lack of sudo access. Despite these difficulties, we
successfully set up the necessary environments, optimize our usage of shared compu‐
tational resources, and validate most of the claims made by Park, Rybkin, and Levine
[1].

6.3 Differences in experimental configuration between our reproduction study and the
original paper by Park, Rybkin, and Levine [1]
One of the major differences in our experimental setup compared to that of the original
study by Park, Rybkin, and Levine [1] stems from the limitation on the maximum al‐
lowable runtime on the Adroit cluster, where we are constrained by a 72‐hour limit per
job. Due to this restriction, we are only able to achieve approximately half of the total
training steps reported in the original paper in pixel‐based Quadruped and Humanoid
environments. This reduction in training time could impact our ability to fully replicate
the learning and development of complex skills effectively as in the original paper.

6.4 Limitations of method proposed by Park, Rybkin, and Levine [1]
The METRA [1] approach has some limitations, acknowledged in the original paper by
Park, Rybkin, and Levine [1]. These limitations are summarized below.

Small Update-to-Data Ratio —METRA employs a notably low update‐to‐data (UTD) ratio,
which is the average number of gradient steps taken per environment step. Specifi‐
cally, METRA utilizes a UTD ratio of 1/4 for the Kitchen environment and 1/16 for the
Quadruped and Humanoid environments [1].

Limited Sample Efficiency — Although METRA uses the straightforward vanilla Soft Actor‐
Critic (SAC) algorithm [39] as its reinforcement learning backbone, there is potential to
enhance its sample efficiency. Despite efficient learning in terms of wall clock time, the
current implementation’s sample efficiency leaves room for improvement [1].
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Restricted Evaluation Scope —METRA has been evaluated solely in locomotion and manip‐
ulation environments and has not been tested in varied settings [1]. Evaluating METRA
in environmentswith complex state spaces and action dynamics, like those presented by
Atari games, could significantly validate and extend its applicability and effectiveness.

Assumption of a Fixed MDP — The original formulation of METRA assumes a fixed Markov
Decision Process (MDP) with stationary and fully observable dynamics [1]. This assump‐
tion limits METRA’s ability to handle non‐stationary or non‐Markovian dynamics, point‐
ing to a potential direction for future enhancements.

6.5 Communication with original authors
We have sent the original authors of the paper this reproducibility report for their feed‐
back. Outside of this, we have not been in any communicationwith the original authors,
Park, Rybkin, and Levine [1].

6.6 Future Work
Building on the challenges and discrepancies discussed in the previous sections, we
identify other experiments for future work that could have been run with more time
and resources.

1. Exploring different hyperparameter settings. In our study, we directly use the
hyperparameter settings from the original paper. Experimenting with various hy‐
perparameter configurations could unveil optimal settings that further enhance
learned policy performance.

2. Conducting experiments on adapting the trained model to downstream tasks. In
the original paper, Park, Rybkin, and Levine [1] also showcase the performance
of METRA as the initialization policy for downstream tasks. If we have more time
and resources, reproducing this experiment could greatly support themain claims
of the paper.

3. Reimplementing all the baselinemethods reported for amore thorough study. As
discussed in the previous sections, wemainly compare our reproducedMETRA [1]
to 3 baseline methods that could be easily reimplemented based on METRA. A
comprehensive reimplementation of all baseline methods reported in the origi‐
nal study would allow for a more accurate comparison and validation of METRA’s
strengths and weaknesses.
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