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Abstract

Most video action recognition models use raw videos as
input [36]. However, not only is this approach inefficient
since video data has high temporal redundancy, but also in-
feasible in practice due to computational and storage con-
straints [36]. Thus, in practice, video action recognition
models sample a subset of all frames in a video in order to
reduce computational expense and inference time. Frame
sampling strategies that are able to select the most salient
and/or discriminative frames from a video would be most
efficient at reducing the required computational expense by
reducing the number of frames that need to be further pro-
cessed by an action recognition model. We hypothesize
that the norm of the optical flow vector of a frame and the
number of objects in a frame provide a signal for which
frames could be the most salient for video action recogni-
tion. Based on these hypotheses, we propose and evaluate
two dataset and model-agnostic frame sampling strategies:
one based on the norm of the optical flow of frames, and the
other based on the number of objects in frames. We find that
although our hypotheses hold, i.e. there is some additional
signal provided by the optical flow norm and number of ob-
jects in the frame about whether the frame is salient for ac-
tion recognition, our proposed approaches do not perform
considerably better than some of the less computationally
expensive baselines introduced later in the paper. Code is
available at this GitHub repository.

1. Motivation and Goal
Video footage constitutes a significant proportion of all

digital data available [1], and has a tremendous capacity to
encapsulate useful information about the world [1]. Once
extracted from raw video data, this information could be
used to build models that could revolutionize manufactur-
ing [1], help build smart cities [1] and autonomous vehi-
cles [1], amongst other high-stakes applications that would

*denotes equal contribution.

make several tasks much more cost-effective and efficient
[1]. Thus, the abundance, richness, and applicability of
video data makes video understanding a key challenge in
computer vision [1], and a hot area for research [1].

As opposed to tasks based on static image processing,
video understanding tasks require the consideration of tem-
poral information along with much more visual informa-
tion as input. Thus, video understanding models are much
more complex and computationally expensive than tradi-
tional static image-based models [34], making these tasks
much more challenging to solve while ensuring such mod-
els are usable given the computational constraints in prac-
tice.

Existing research on visual understanding tasks has
mostly focused on obtaining compact yet effective video
representations for efficient and robust recognition [34].
However, figuring out an efficient inference strategy for fast
processing is also essential for video understanding models
to be usable in practical applications [34]. While the high
time redundancy in video data makes it unnecessary to to
feed entire videos into a model for subsequent processing,
computational budget constraints in practice often make this
infeasible [34]. Thus, finding an efficient strategy for sam-
pling a small subset of the frames of a video for further
processing is a more fundamental challenge in video under-
standing - one that remains to be unsolved [34]. Therefore,
it is crucial to investigate efficient sampling strategies for
video understanding tasks in order to develop models that
can be used in practice.

The canonical approach for sampling frames typically
involves employing a fixed hand-crafted sampling strategy
for training and testing in videos [20, 23, 25]. The model
is trained on frames/clips that are randomly sampled either
evenly or successively with a fixed stride from the original
video [34]. During the test phase, in order to cover the full
duration of the video, clips are densely sampled from the
video, and the final output is determined by averaging these
dense prediction scores [34].

Yet, there are several problems associated with such
fixed, hand-crafted sampling strategies. Firstly, since the
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exact set of frames where the action occurs in a video is not
fixed across different videos, fixing which frames are sam-
pled across videos may cause actions in frames that hap-
pen to not be sampled to be missed by the model. More-
over, not all frames are equally salient for video understand-
ing tasks, and an efficient sampling strategy should attempt
to select more discriminative frames rather than irrelevant
background frames that do not meaningfully affect predic-
tions or provide additional new information compared to
other selected frames.

Prior work on devising efficient sampling strategies have
involved adding an adaptive sampling module [7, 28, 30].
Typically, these modules are trained to select more discrim-
inative frames for subsequent processing [34]. However,
such methods heavily depend on the training data, and can-
not easily transfer to unseen actions [34]. Thus, further re-
search is required in order to develop sampling strategies
that are both task and dataset-agnostic.

In this paper, we aim to present and evaluate simple,
sparse, and explainable sampling strategies for video under-
standing that are (1) more generalizable and independent of
the training data, and (2) able to deal with varied video con-
tent adaptively at inference time.

In particular, we focus our analysis on the task of video
action recognition, which involves recognizing human ac-
tions in a video [36]. We focus our analysis on this task
since it is one of the most representative tasks for video un-
derstanding [36], requiring the model to be able to recog-
nize, localize, and predict human behaviors [36].

Two key ideas motivate the proposed sampling strategies
in this paper.

1. Frames with greater apparent motion are more likely
to convey new information about human action in a
video, and are thus more likely to be salient and/or dis-
criminative for human action prediction. Optical flow
quantifies the pattern of apparent motion of objects,
surfaces, and edges in a visual scene caused by the
relative motion between an observer and a scene [4].
Thus, the optical flow of a frame may provide a uni-
versal and transferable signal for identifying salient
and/or discriminative frames.

2. Frames with more objects are more likely to contain
human action than background scene frames that do
not contain objects. Thus, the number of objects in a
frame may also provide another dataset-agnostic and
transferable signal for identifying salient and/or dis-
criminative frames. Frames without objects are more
likely to be irrelevant or redundant for action recogni-
tion.

Thus, more specifically, this paper aims to explore an op-
tical flow-based and object detection-based frame sampling

strategy for more resource-efficient video action recogni-
tion, along with more simple baseline sampling strategies
to compare our proposed strategies against. This paper goes
on to thoroughly investigate and analyse the proposed sam-
pling strategies both quantitatively and qualitatively in or-
der to draw insights about which types of sampling strate-
gies might allow us to identify and select the most salient
and/or discriminative frames for efficient action recognition
and why.

We find that although our hypotheses hold, i.e. there is
some additional signal provided by the optical flow norm
and number of objects in the frame about whether the frame
is salient for action recognition, our proposed approaches
do not perform significantly better than some of the less
computationally expensive baselines introduced later in the
paper.

2. Problem Background and Related Work
2.1. Compressed video action recognition

Inspired by the progress in the video compression do-
main, several works have adopted compressed video repre-
sentations as input to train computationally efficient video
models.

Video compression methods often store a frame by
reusing contents from the original RGB video frame and
only store the difference, as captured by the motion vector
and residual [36]. These methods rely on the assumption
that adjacent frames are most often very similar [36].

2.1.1 Knowledge distillation-based approach

Zhang et al. [32] take into account the coarse structure
of the motion vector and the inaccurate movements they
may contain by adopting ‘knowledge distillation’ to help
the motion-vector-based temporal stream mimic the optical-
flow-based temporal stream [32]. Their approach is 27
times faster than standard two-stream networks while main-
taining comparable accuracy. However, their approach re-
quires extracting and processing each frame, making it com-
putationally expensive.

2.1.2 CNN-based approach

Wu et al. [27] use a heavyweight CNN for the original RGB
video frame and lightweight CNN’s for the motion vec-
tor frames obtained. However, this approach requires that
the motion vectors and residuals for each frame be referred
back to the original RGB frame by accumulation.

DMC-Net [19] follows up on Wu et al. [27] using adver-
sarial loss. They adopt a lightweight generator network to
help the motion vector capturing fine motion details, instead
of knowledge distillation as in Zhang et al. [32]
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2.2. Frame/Clip sampling

Many methods take inspiration from normal human clas-
sification which involve skimming over a video and only
using just a few glimpses [31]. These methods involve sam-
pling the most informative video frames to both improve
performance and improve model efficiency during infer-
ence.

2.2.1 Naive frame sampling strategies

Some 3D CNN based methods [5, 10, 22] use a naive frame
sampling strategy which first selects a random frame in the
video, then concatenates a subset of the next 64 consecutive
frames using uniform sub-sampling. TSN [26], on the other
hand, samples frames uniformly.

Both these sampling strategies are often used by ac-
tion recognition models. However, they treat every frame
equally and ignore the redundancy between frames [36],
making them inefficient.

2.2.2 Initial salient frame sampling strategies

KVM [35] was one of the earliest attempts at actively se-
lecting salient frames from a video. They do so by using
a framework that identifies key frames and performs ac-
tion recognition simultaneously. On the other hand, AdaS-
can [13] computes an importance score for each frame in
an online manner, which is termed “adaptive temporal pool-
ing”. However, both these methods are not efficient at in-
ference time [36].

2.2.3 Reinforcement learning-based frame sampling
strategies

Recently, several works proposed reinforcement learning
(RL) to train agents using policy gradient methods to se-
lect frames [36]. FastForward [18] uses RL for frame-
skipping, planning and early-stop decision making to re-
duce the computation burden for untrimmed video action
recognition. Adaframe [30] proposes an LSTM augmented
with a global memory to search which frames to use over
time, which was trained by policy gradient methods to
search more informative video clips. Multi-agent [28] uses
N agents where each agent selects an informative frame/clip
from a video.n DSN [33] proposes a dynamic version of
TSN which utilizes RL-based sampling. LiteEval [29]
avoids complicated RL policy gradients by presenting a
coarse-to-fine and differentiable framework containing a
coarse LSTM and a fine LSTM organized hierarchically,
in addition to a gating module for selecting coarse or fine
features. AR-Net [24] proposes a unified framework for se-
lecting optimal frame resolutions and skipping. This frame-
work is learnt in a fully differentiable manner.

2.2.4 Motion-based frame sampling strategies

MGSampler [34] proposed a motion-uniform sampling
strategy that samples frames based on motion distribution.
This strategy ensures even coverage of all video segments
while maintains high motion salience in frames. They
demonstrate that their sampling method achieves higher ef-
fectiveness compared to fixed sampling strategies using 5
different benchmarks.

2.2.5 Sparse Sampling

ClipBERT [16] utilized the idea of sparse sampling using
only a randomly sampled one-second segment of a video.
They found that this sparse sampling technique outper-
forms similar video and language models which use full-
length videos, and also generalizes well between different
domains.

2.2.6 Audio-based frame sampling strategies

Audio has also been used as an efficient way to select salient
frames for action recognition in several prior works.

SCSampler Korbar et al., 2019 [15] uses a lightweight
CNN as the selector which attempts to sample the most
salient video clips based on compressed video representa-
tions at test time using salience scores. To train the se-
lector, they use audio as an extra input. Their method
achieves state-of-the-art performance on both Kinetics400
and Sports1M dataset. They also empirically show that
such saliency-based sampling is not only efficient, but also
achieves higher accuracy than using all video frames.

Listen to Look [11] uses audio to remove short-term and
long-term visually redundant frames for fast video action
recognition at inference time.

Although all the aforementioned approaches improve ac-
tion recognition model performance, the design of their
sampling module is often complex and computationally
expensive. Moreover, the training process of their sam-
pling module requires large number of training samples
with longer training time, and ends up being specific to the
dataset it is trained on, making it non-generalizable to other
datasets and other tasks.

Thus, our goal is to present simple, generalizeable and
explainable frame sampling modules that do not employ any
learning strategy.

2.3. Optical flow

Optical flow is the pattern of apparent motion of im-
age objects between two consecutive frames caused by the
movement of object or camera [4]. It is 2D vector field
where each vector is a displacement vector showing the
movement of points from first frame to second [4].

Optical flow works on two main assumptions.
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1. The pixel intensities of an object do not change be-
tween consecutive frames [4].

2. Neighbouring pixels have similar motion [4].

Consider a pixel I(x, y, t) in the first frame. It moves
by distance (dx,dy) in next frame taken after dt time [4].
So since those pixels are the same and intensity does not
change, we can say,

I(x, y, t) = I(x+ dx, y + dy, t+ dt)

[4]
Then take Taylor series approximation of right-hand

side, remove common terms and divide by dt to get the fol-
lowing equation [4]:

fxu+ fyv + ft = 0

[4] where:

fx =
∂f

∂x
; fy =

∂f

∂y

[4]

u =
dx

dt
; v =

dy

dt

[4]
Above equation is called Optical Flow equation [4]. In

it, we can find fx and fy , they are image gradients [4]. Sim-
ilarly ft is the gradient along time [4]. But (u,v) is un-
known [4]. We cannot solve this one equation with two
unknown variables [4], so several algorithms have been de-
veloped to solve this problem.

3. Approach
3.1. Baseline Frame Sampling Strategies

In order to appropriately compare our proposed sampling
strategies, we construct simpler sampling strategies to eval-
uate if our proposed sampling strategies can perform bet-
ter than these less computationally expensive strategies. In
this section, we present three baseline strategies and explain
them in detail. In each of the sampling strategies described
below, L denotes the length of the original video V , and T
denotes the desired length of the final shortened video clip
C which is then used as input to the off-the-shelf pre-trained
video action recognition model.

3.1.1 Uniform Frame Sampling

In this strategy, a fixed algorithm is used in order to sample
the frames used for further processing. First, the original
video V of length L is split into T clips of length L

T each.
In doing so, we obtain T clips, and the ith clip is denoted
by Ci for iϵ{1, ..., T − 1}. The clip Ci thus contains frames
of indices in the range [LT i,

L
T (i+ 1)]. For each Ci, the first

frame is chosen, such that we choose frames at index L
T i

for iϵ{1, ..., T − 1}. We then concatenated these frames to
obtain a single final clip C of length T which is then used
for further processing. In this paper, we experiment with T
values of 1, 4, 8, and 16.

3.1.2 Random Frame Sampling

In these strategies, a small number of frames are randomly
sampled from the original clip. We experiment with differ-
ent possible mechanisms of drawing the randomly selected
frames, each of which is explained below.

1. Sequential: First, a random integer k is drawn uni-
formly at random in the range [0, L− 1]. Next, frames
with indices in the range [k, k + T − 1] are chosen
from the original video V and concatenated to obtain
the shortened video clip C. In this paper, we only eval-
uate this strategy for the T = 16 case.

2. Non-Sequential: First, T random integers are drawn
uniformly without replacement from the range [0, L−
1]. The frames at the indices corresponding to the T
random integers drawn are chosen and concatenated
together to obtain the shortened video clip C. We ex-
periment with T values of 1, 4, 8 and 16.

3.1.3 Position-based Random Frame Sampling

Similar to random frame sampling, in the following strate-
gies we segregate sections of the original clip into multiple
segments, from which we randomly sample frames.

1. Fourths: Non-sequential sampling from T sections of
the original video V . First, the original video V is split
into T clips of equal length, where each clip is denoted
as Ci for i in {0, ..., T−1}. Each clip Ci thus obtained
contains L

T frames, and the frames with indices in the
range [LT i,

L
T (i+1)] are chosen to be in clip Ci. Thus,

a single random frame is drawn from each clip Ci by
drawing an integer from the range [LT i,

L
T (i + 1)] uni-

formly at random, and using the frame at that index
from the original video V . Each of the frames cho-
sen from each clip Ci is then concatenated together to
obtain the final shortened clip C with T frames, as de-
sired. In this paper, we only experiment with T = 4.

2. Mixed: First frame followed by m frames from each
kth section of the original video V . First, the original
video V is split into k clips of equal length, where each
clip is denoted as Ci for i in {0, ..., k − 1}. Each clip
Ci thus obtained contains L

k frames, and the frames
with indices in the range [Lk i,

L
k (i + 1)] are chosen to

be in clip Ci. Thus, m random frames are drawn from
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each clip Ci by drawing m integers without replace-
ment from the range [Lk i,

L
k (i + 1)] uniformly at ran-

dom, and using the frame at that index from the orig-
inal video V . Along with the first frame of the origi-
nal video V , each of the m frames chosen from each
clip Ci is then concatenated together to obtain the final
shortened clip C with mk + 1 frames, as desired. In
this paper, we only experiment with k = 3, and m = 1,
2, and 5. In the case of m = 2, we also add an addi-
tional frame obtained by drawing a frame uniformly
at random from the original video V , and concatenate
this frame with the clip C.

3. [Beginning, Middle, End] Third: k frames from the
first third, middle third or last third of the original
video V . First, the original video V is split into 3
clips of equal length L

3 . The first, middle and last clip
thus obtained are denoted by C0, C1 and C2 respec-
tively. Then, T frames are sampled from either C0, C1

or C2 uniformly at random, and concatenated together
to form the final clip C of length T . In this paper, we
experiment with T values of 4, 8, and 16.

3.1.4 Theoretical Best Frame

The goal of this approach is to evaluate how well a model
could possibly perform when given only a single frame, i.e.
no temporal information at all, assuming that we are some-
how able to find a single frame in the video V that allows us
to accurately predict the action in the full video V . We find
this “theoretical best” performance on a single frame using
a procedure described as follows.

1. For every kth frame fi in the original video V , i.e.
stride of k and iϵ{0, 5, 10, ...}, do the following:

(a) Create a clip Ci by making T copies of fi and
concatenating them together, to obtain a clip of
length T .

(b) Use this clip as input into the pre-trained video
action recognition model, and get the model’s
predictions

(c) if the model’s prediction does not match the
ground truth, i.e. it is incorrect, then move on to
the next frame. Otherwise, if the model’s predic-
tion is correct, i.e. it matches the ground truth,
then use this clip Ci for further processing (i.e.
Ci = C) and stop iterating through the remain-
ing frames.

In this paper, we experiment only with k = 5 and T =
16

3.2. Optical Flow-based Sampling Strategies

Previously, we hypothesized that optical flow may pro-
vide a signal about which frames may be more salient for
action recognition. We test this hypothesis by devising sam-
pling strategies that select frames based on the optical val-
ues of each frame. There are many different possible mech-
anisms for choosing frames based on optical flow. Each of
the ones we evaluated in this paper are described below.

First, we begin by calculating the dense optical flow vec-
tor between each frame in a given video, which returns L−1
dense optical flow vectors. We take the norm of each of the
L− 1 dense optical flow vector to get the optical flow for a
specific frame.

1. Optical Flow (Highest): Choose the top T frames that
have the highest optical flow norm, and concatenate
them together to get clip C used for further processing.
In this paper, we experiment with T values of 1, 4, 8
and 16.

2. Optical Flow (Lowest): Choose the lowest T frames
by optical flow norm, and concatenate them together
to get clip C used for further processing. In this paper,
we experiment with a T value of 16 only.

3. Optical Flow (Mixed): Choose the T = 8 highest
frames and the T = 8 lowest frames by optical flow,
and concatenate them together to get clip C used for
further processing.

4. Optical Flow (Smart): Details explained in the sec-
tion below.

3.2.1 Optical Flow (Smart) Frame Sampling Strategy

(a) Frame 40 (b) Frame 125

Figure 1. Both frames come from a video of a boy playing basket-
ball. At around frame 125, the person holding the camera drops
the phone.

This sampling strategy was developed to help deal with
videos that have a high amount of optical flow. One obser-
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vation made in the initial parts of this study was that videos
that have an excessive amount of movement tend to con-
fuse classifiers that use random, uniform, or position based
frame-strategies. This is because there is usually a chunk of
the video where the camera is moving around, is dropped,
or goes out of focus from the action we are trying to recog-
nize. Often times, when the action is being performed, the
optical flow tends to be generally constant and on smaller
scales of magnitude than when there is a lot of movement or
the camera goes out of focus of the main action. Therefore,
we want to use optical flow to identify the regions where
the optical flow stays somewhat constant because it is more
likely the frames in this region will allow the classifier to
accurately predict the action.

(a) Magnitude Optical Flow

(b) Derivative of Magnitude of Optical Flow

Figure 2. Optical Flow and Derivative of Optical Flow Graph for
the video of the kid playing basketball.

In Figure 1, we see a video that is labeled with the ac-
tion “playing basketball”. In the beginning of this video, a
boy is filmed shooting a basketball at a hoop. In the mid-
dle of shooting (from around frames 100-140), the person
holding the phone drops the phone and then recovers it at
around frame 140. From Figure 2a, we see that the optical
flow mirrors this, with the optical flow oscillating drasti-
cally from around frames 100-140 and it staying more con-
stant before and afterwards. Figure 2b, which shows the
result of taking the derivative of the optical flow, has values
close to 0 when the camera is focused on the boy shooting
and values close to position of negative 5 when the camera
was dropped. To get a good sample of frames to input into

Figure 3. The highlighted points on the derivative of optical flow
graph show which frames

our model, we want to choose frames that lie in the regions
where the derivative is close to 0.

Therefore, we define our frame sampling strategy as the
following:

1. Compute the derivative of the optical flow for each of
the L frames in the video. Take the absolute value of
the derivative. Let’s call this function A(fi) for a frame
fi.

2. Split up the video V into clips Ci of equal frame
length. For now, let’s say that Ci =

L
10 .

3. For each clip Ci, take the average of the absolute value
of the derivative of the optical flow. We can represent
this as the function D(Ci) = AV G(A(fi)∀fi ∈ Ci).

4. Choose the T clips with the smallest D(Ci) values.

5. Randomly sample one frame from within each of the
T clips and concatenate them to form C.

For this paper, we choose T = 8. After running this pro-
cess, we should get 8 frames from the video that lie in re-
gions with generally constant optical flow. The blue points
in Figure 3 show the location on the derivative graph from
which the frame sampling algorithm selected frames. We
can see that it sampled frames the video that didn’t include
the parts of the video when the phone fell and was out of
focus of the child shooting the basketball.

3.3. Object Detection-based Frame Sampling
Strategies

Previously, we hypothesized that the number of objects
in a frame may provide a signal about which frames may be
more salient for action recognition. We test this hypothesis
by devising sampling strategies that select frames based on
the number of objects detected in each frame by an off-the-
shelf pre-trained model. Each of the strategies we evaluated
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in this paper are described below. Since videos may have
many frames with the same amount of objects, we tie-break
by taking the frames that appear first in chronological order.

1. Choose the top T frames with the largest amount of
detected objects, and concatenate them together to get
clip C used for further processing. In this paper, we
experiment with T values of 1, 4, 8 and 16.

2. Choose the lowest T frames with the fewest amount of
detected objects, and concatenate them together to get
clip C used for further processing. In this paper, we
experiment with a T value of 16 only.

3. Choose the T = 8 highest frames and the T = 8 low-
est frames in terms of amount of detected objects, and
concatenate them together to get clip C used for fur-
ther processing.

4. Dataset
In order to obtain our test set, we sample 500 examples

uniformly at random without replacement from the original
validation split of the Kinetics400 dataset [14]. Thus, we
evaluate all out proposed frame sampling strategies on this
set of videos.

We choose the Kinetics400 dataset [14] since the Kinet-
ics Family is the most widely adopted video action recogni-
tion benchmark [36], and thus a good dataset to evaluate our
proposed strategies on. Kinetics400 [14] was introduced in
2017, and is the first and most popular dataset published
as part of the Kinetics Family, consisting of approximately
240k training and 20k validation videos trimmed to 10 sec-
onds from 400 human action categories [14].

We limit our test set to 500 random examples sampled
from the original validation split due to computational and
time constraints, since running inference on the full test
or validation set would be very computationally expensive,
and out of the scope of the time and computational con-
straints of this paper.

5. Design and Implementation
5.1. VideoMAE [21]: An off-the-shelf action recog-

nition model

This paper uses the base VideoMAE model [21] pre-
trained for 1600 epochs in a self-supervised way and fine-
tuned in a supervised way on Kinetics-400 [14]. The
weights of this off-the-shelf video action recognition model
are loaded from HuggingFace [3] from the model check-
point ”MCG-NJU/videomae-base-finetuned-kinetics” [3].
This model checkpoint performs video classification into
one of the 400 possible Kinetics-400 [14] labels [14] de-
noting human actions.

VideoMAE extends Masked Autoencoders (MAE) [12]
to video. The architecture of the model is very similar to
that of a standard Vision Transformer (ViT) [6], with a de-
coder on top for predicting pixel values for masked patches
[6].

By pre-training the model, it learns an inner representa-
tion of videos that can then be used to extract features useful
for downstream tasks [2]. For instance, for a dataset of la-
beled videos, a standard classifier can be trained by adding
a linear layer on top of the pre-trained encoder [2]. Typi-
cally the linear layer is placed on top of the [CLS] token, as
the last hidden state of this token gives a representation of
an entire video [2].

5.2. Optical Flow Algorithm

In this paper, we use the an algorithm based on Gunnar
Farneback’s algorithm [9] as implemented in the OpenCV
module ”calcOpticalFlowFarneback” [?]. This algorithm
finds the dense optical flow, which computes the optical
flow for all the points in the frame.

5.3. YOLOS [8]: Off-the-shelf object detection
model

In this paper, we use the YOLOS tiny-sized model [8],
with pre-trained weights loaded from the “hustvl/yolos-
tiny” checkpoint from HuggingFace [?].

YOLOS [8] is fine-tuned on the COCO 2017 object de-
tection [17] containing 118k annotated images [17]. It can
perform object detection, and is able to detect 80 classes of
objects from the COCO dataset [17].

5.4. Model Pipeline and Experiment Setup

To evaluate which frame sampling strategies are the most
effective, we run all the frame sampling strategies defined
in section 3 with their respective parameters and obtain 16
frames to input into the model. If our frame sampling strat-
egy is supposed to return less than 16 unique frames, we
repeat the unique frames so that we can input 16 frames
into the model. For example, if we sample one unique
frame, we will repeat that frame sixteen times for input into
the model. The sampled frames are fed into a pretrained
VideoMAE (finetuned on Kinetics400) classifier to perform
action recognition on a test set of 500 randomly sampled
videos from the Kinetics400 dataset. We report the accu-
racy of the classifier on those 500 videos in our results.

5.5. Hypotheses

Based off our proposed sampling strategies, we hypoth-
esize the following:

1. Both object detection based sampling and optical flow
based sampling will yield better results than our base-
line sampling strategies. Because both object detec-
tion and optical flow consider video information such
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as motion and presence of objects, frames selected by
these strategies will likely be of higher “value” com-
pared to randomly sampled frames, and thus allow the
model to improve its inference accuracy.

2. Sampling strategies which sample more frames will
yield higher accuracy and perform better than sam-
pling strategies which sample fewer frames. However,
single frame sampling strategies will still yield bet-
ter than random results, due to the fact that a single
frame will likely be a good representation of the entire
video, and contain overlapping information with other
frames.

6. Results, Analysis and Discussion
6.1. Quantitative Analysis

6.1.1 Random chance of success

The Kinetics400 dataset [14] contains 400 classes of ac-
tions, so 1

400 = 0.0025 is the random chance accuracy. This
indicates that all of our proposed approaches capture some
significant enough signal that allows them to select the most
salient/discriminative frames for action recognition. This
makes sense since even a single frame would contain some
amount of information that would allow for the model to
rule out completely unrelated classes, and thus narrow down
the possible action classes the frame could possibly repre-
sent considerably. For instance, a picture of a person in a
field outdoors with a ball completely rules out the possi-
bility that the action is cooking, since it is impossible that
someone outdoors with a ball could possibly be cooking,
especially in the absence of any cooking material.

6.1.2 Comparing Clip Sampling Strategies

See Table 1 for a complete list of accuracies for all sam-
pling methods. We found that all of our sampling methods
resulted in a classification accuracies above 65%, when us-
ing 16 frames.

Our baseline strategies: Uniform sampling performs the
best across all of our frame sampling strategies (with the
exception of the theoretical best, of course). The non-
deterministic random and position-based sampling strate-
gies performed slightly worse than uniform sampling, po-
tentially due to uncertainty and randomness affecting the
quality of the selected frames.

Among the random sampling strategies, it is clear that
sequentially sampling frames leads to a significant drop
in performance as compared to non-sequentially sampling
frames. For videos that have a high temporal variability,
randomly sampling non-sequentially gives frames that en-
code greater temporal information and visual cues, which
may be the reason for the improvement in performance here.

We hypothesize that this is also the reason why uniform
sampling outperforms both random sampling and position-
based sampling.

We found that our proposed optical flow and object de-
tection strategies did not contain any significant improve-
ment over our baselines, with the maximum accuracy from
each category being roughly similar and within a 10 video
margin. Within the optical flow category, we see that our
smart frame sampling strategy performs better than the
other frame sampling strategies, with the mixed frame-
sampling strategy being a close second. One observation
that we make in our analysis is that the optical flow (highest
and lowest) models have a smaller variance between their
sampled frame position numbers compared to random and
position based sampling methods. This indicates that sam-
pling frames by optical flow causes us to sample frames that
are temporally close to each other which may prove prob-
lematic for videos that have high temporal variance. The
variance of the frame positions with the smart and mixed
optical flow sampling model are higher than that of the other
optical flow sampling strategies which might be the reason
for it’s improvement in performance.

Our object detection based sampling strategy performed
more poorly compared to optical flow based sampling in ev-
ery equivalent experiment, and performed slightly worse on
our baseline strategies. The highest accuracy for object de-
tection sampling was 76.8%, which is less than the 78.2%
accuracy of smart optical flow sampling and 77.6% and
78.8% accuracies of the position based and uniform base-
line strategies.

Additionally, we found that the theoretical best accuracy
for the video action recognition model when using a sin-
gle frame with no temporal information was 85.9%, which
is the highest accuracy of all our results. This means that
some videos contained frames which we did not accurately
sample, but would have contributed to a correct classifica-
tion.

When considering the effects of sampling fewer frames
in Table 2, our baselines even out performed our optical
flow and object detection based sampling strategies for the
16 and 4 unique frame experiments.

These results reject our hypothesis 1, and show that
there is no significant difference in accuracy between our
proposed object detection and optical flow based sampling
methods.

6.1.3 Comparing Number of Unique Frames

When comparing our sampling strategies which sample dif-
ferent amounts of unique frames per video, we found that
for the majority of cases, sampling more frames sampled
always yielded better accuracies.

For sampling strategies which only sampled one frame,
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Sampling Method Unique Frames Accuracy

Random Sequential 16 0.672
Non-Sequential 16 0.766
Uniform 16 0.788

Position Based

Fourths 4 0.664
Mixed 16 0.776
Beginning Third 16 0.736
Middle Third 16 0.764
End Third 16 0.746

Optical Flow

Highest 16 0.770
Lowest 16 0.734
Mixed 16 0.776
Smart 8 0.782

Object Detection
Highest 16 0.764
Lowest 16 0.704
Mixed 16 0.768
Theoretical Best 1 0.859

Table 1. Table of classification accuracies for each sampling method. Each sampling method involved sampling unique frames from a
video. Our baseline results from Random Sequential, Random Non-Sequential, Uniform, and Position-based sampling are compared to
our proposed Optical Flow and Object Detection based sampling methods.

Sampling Method Number of Unique Frames
16 8 4 1

Random Non-Sequential 0.766 0.730 0.662 0.496
Uniform 0.788 0.700 0.640 0.476
Position (Mixed) 0.776 0.718 0.672 -
Position (Beginning Third) 0.736 0.668 0.612 0.490
Position (Middle Third) 0.764 0.702 0.662 0.540
Position (End Third) 0.746 0.676 0.604 0.514
Optical Flow (Highest) 0.770 0.652 0.594 0.488
Optical Flow (Smart) - 0.782 - -
Object Detection (Highest) 0.764 0.700 0.650 0.554

Table 2. Table of classification accuracies comparing our baseline sampling methods to our Optical Flow and Object Detection based
sampling methods on different sizes of video clips (16, 8, 4, and 1 unique frames).

we found that object detection yielded the highest accuracy
at 55.4%, while the other sampling strategies performed
slightly worse, with accuracies around 50%. This indicates
that for single frame sampling, object detection seemed to
be the most effective. For sampling strategies which sam-
pled four frames, the best performing model was the smart
optical-flow model and for the sampling strategy which
sampled eight frames, the random non-sequential model
did the best. These results are in line with our hypothesis
2, with single frame classification accuracies being signifi-
cantly higher than random guessing.

One question we tried to answer in this paper was
whether it is possible to find a method of representing the
same temporal information in a video with fewer frames.
For example, is it possible to classify the correct action
in a video by just using one frame? The theoretical best

model shows that for 85.9% of the videos in this dataset, it
is possible for us to correctly classify the right action with
just one frame of the video. Unfortunately, none of of our
clip-sampling methods was able to achieve the same kind
of accuracy with the highest accuracy being only 55.4%.
However, we can see that it is theoretically possible to see
a classifier that uses fewer than 16 frames having accept-
able model performance, which increases scalability and
efficiency for action recognition models if such a frame-
sampling algorithm is found. Notably, our smart optical-
flow model does outperform the the majority of our other
models with only 8 frames instead of 16. This shows that it
would actually be more computationally efficient for Video-
MAE to implement our smart optical flow frame-sampling
strategy and only require 8 frames to classify with the same
level of accuracy that their current model does with 16
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Figure 4. Qualitative Analysis. This figure shows the results of running 5 different 4-frame clip sampling methods on a video of a woman
cartwheeling. We see that only optical and position are able to extract frames to allow the model to predict the correct label.

frames.

6.2. Qualitative Analysis

In Figure 4, we have an example of four frames extracted
from a video of a woman cartwheeling by different frame
sampling strategies that we explore in the paper as well
as the label that was predicted from the extracted frames.
These clip sampling strategies only extract 4 frames from
the video for classification. There are a couple of insights
that we can gain from this figure. First of all, in the video,
we know that the woman only cartwheels for a part of the
video, which means that extracting the 4 frames from the
only part of the video in which the woman is cartwheeling
is important for classification.

Right off the bat, we see that objection detection, uni-
form sampling, and random sampling predict the wrong la-
bel. For random sampling, it gets two frames of the woman
standing at the end of the cartwheel which isn’t helpful for
the model to understand that the woman is cartwheel. Uni-
form sampling isn’t able to get the woman mid-cartwheel,
completely passing over the part of the video where she is
cartwheeling (even a human might not be able to tell that
she was cartwheeling if given those frames). Object detec-
tion simply outputs frames from the beginning of the video
because it doesn’t detect the woman mid-cartwheel as an
object.

However, both the optical flow model and the posi-

tion (mixed) model are able to predict that the woman is
cartwheeling. The optical flow model grabs the frames
where the woman is mid-cartwheel as well as the frames
right before she cartwheels which is enough for the model
to properly classify her action. This helps us understand
how using optical flow for frame sampling may be benefi-
cial for certain action recognition tasks. In this video, using
optical flow to sample frames worked well because the pre-
dicted action class involved a lot of activity and was concen-
trated in a subsection of the video, so methods like uniform
and random sampling had a hard time extracting appropriate
frames.

6.2.1 Action Classes that Require More Frames to
Classify

Another point of analysis in this paper was trying un-
derstanding which action classes require more frames to
correctly classify. To do this, we found the classes that
were most misclassified by the 1-frame, 4-frame, and
8-frame random-sampling (non-sequential) clip-sampling
method as compared to the 16-frame random-sampling
(non-sequential) method. The top 10 classes that were
misclassified because there were less frames extracted are:
{blowing nose, playing basketball, climbing a rope, sharp-
ening pencil, peeling apples, skiing slalom, cartwheeling,
strumming guitar, tap dancing, swimming breast stroke}.
This result is particularly curious because not all of these

10



classes are high-action as we had initially hypothesized.
However, when digging into some of the videos that were
misclassified within these action classes, we are able to see
that these misclassifications are a result of a large amount
of temporal variance in the video that smaller number of
frames aren’t able to capture.

6.2.2 Strengths and Weaknesses of Our Clip-Sampling
Strategies

• Random and Uniform Frame-Sampling Tech-
niques: Random and uniform frame-sampling tech-
niques generally tend to perform well because they
tend to grab frames from multiple parts of the video.
Obviously, they underperform when trying to extract 1
frame but when extracting multiple frames (16,8, etc),
they tend to extract frames that give a holistic under-
standing of the video, especially if the video has high
temporal variance. However, random, uniform, and
position based sampling methods struggle if the tem-
poral activity all resides in a small subset of the video
(for example if the action occurs only towards the end
of the video).

• Optical Flow Frame-Sampling Techniques: Opti-
cal Flow frame sampling techniques tend to outper-
form random, uniform, and position based sampling
methods when the action is the video involves a lot
of motion and person or thing doing the action takes
up a large portion of the video. Optical flow frame-
sampling methods fail oftentimes when they attempt to
predict action classes that have less motion associated
with them (i.e. peeling apples, sharpening pencil vs
cartwheeling, tap dancing). They also fail often times
when the action happening takes up a small part of the
frame, which means that the optical flow values calcu-
lated are lower than they would be if we zoomed in on
the video.

• Object Detection Frame-Sampling Techniques: Ob-
ject detection techniques succeed when multiple actors
take place in doing an action or where multiple objects
are involved in the action being performed. The abil-
ity of an object detection frame-sampling mechanism
to extract the correct frames is severely limited if the
action being done doesn’t involve any discernable ob-
jects or if the video being classified involves additional
objects moving in and out of the frame that are not as-
sociated with the action we are trying to classify. In
addition, running object detection models on frames
takes needed computation and causes inference to take
longer.

7. Conclusion and Future Work
In this paper, we investigate two possible smart sam-

pling strategies along with more naive baseline strategies
to evaluate possible sampling strategies for more resource-
efficient video action recognition. We find that although our
hypotheses hold true to some extent, i.e. there is some addi-
tional signal provided by the optical flow norm and number
of objects in the frame about whether the frame is salient for
action recognition, our proposed approaches do not perform
significantly better than some of the less computationally
expensive baselines introduced later in the paper. However,
one important insight we notice is that our 8-frame smart
optical flow frame-sampling method is able to achieve the
same accuracy as other frame sampling strategies that ex-
tract 16 frames which means that it is possible to use 8
frames rather than 16 frames to perform action recognition
with high accuracy, which can lead to improvements in effi-
ciency and scalability for action recognition platforms. We
also are able to evaluate and do an in-depth analysis on the
strengths and weaknesses of these frame-sampling strate-
gies on different types of videos. [future work suggestions]
are all promising areas for future work.
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